《逢島必輸?從世界爛島預示「明日大嶼」》報告 Greenpeace 綠色和平 |香港辦公室

Page 1


是次研究的「人工島」定義:人工島指以填海方式興建的人造島嶼。興建人工島的方法至少有兩種。一種是在 遠離現有海岸線的地方建造人工島,另一種是擴大現有的島嶼,或將多個小島合併成更大的島嶼並至少擴 大一倍(Zheng et al, 2020)。就島嶼的發展功能而言,本文提及的人工島是指計劃作為(1)居住或(2)商業或 (3)旅遊和娛樂用途的人工島。完全/主要為工業或運輸用途的人工島則不包括在內。本清單提及的人工島既 包括已經竣工或部分落成的島嶼,亦包括尚在建設或已計劃興建的人工島。 人工島對環境的主要影響 1. 混濁度 填海過程中會進行挖掘,挖泥船會排放含有泥沙的水 (IADC, 2017),加上填充物料滲入建築工地附近區域 (Fryer, 2021),顆粒可導致水質混濁並帶有泥污,水的混濁度便隨之增加。 混濁度高的水會阻擋陽光穿透,降低海洋植物(如海草)的光合作用水平,減少日間的氧氣釋放量。此外,還 會影響海洋動物的視野,阻礙牠們覓食、觀察捕食者和求偶。如果顆粒物質增加,海底的生境亦可能出現窒 息的情況 (IADC, 2017)。 受濁度問題影響的人工島: ❖ 柔佛森林城市 (Rahman, 2017) ❖ 棕櫚島 (Butler, 23 August 2005 & Salahuddin, 2006) ❖ 蓬萊 (NRPBP, 2019) ❖ 新加坡 (Ee, 2014)

杜拜一個填海工程的填料導致附近水域混濁。 來源:Nieuwsblad Transport (2017)


朱美拉棕櫚島衛星圖像顯示濁度影響的範圍 來源:Smit, Mocke, Giarusso, & Baranasuriya (2008)

雷射雷達(LIDAR)分析圖可見淺藍色部分的挖沙區域,顯示該範圍比鄰近海床深。 深藍色的部分因太過混濁,使雷射不能穿透海水,因而只能以原有衛星圖像呈現。 來源:Smit, Mocke, Giarusso, & Baranasuriya (2008) 2. 海岸侵蝕 人工島會改變近岸的波浪形態(wave regime) ,當海浪速度變得越來越高時,破壞力便會比以往強,因此 形成更大的回流(Backwash),沖走海灘上的物質,並逐漸蠶食陸地。長岸漂流(斜波之中沉積物的移動)等 海岸現象也可能因而改變,導致海岸侵蝕。(Smit, Mocke, Giarusso, & Baranasuriya, 2008)。


受海岸侵蝕影響的人工島 ❖ 峇里Serangan島 (Sudiarta, 2012) ❖ 雅加達灣 (Elyda, 2015) ❖ 棕櫚島 (Salahuddin, 2006) ❖ 蓬萊 (NRPBP, 2019) ❖ 鳳凰島 (MEEPRC, 2017) ❖ 萬寧日月灣 (DEEHP, 2020)

朱美拉棕櫚島一帶的波浪折射模擬圖。 三張圖分別顯示來自北、西北,及西面的波浪的折射。藍色範圍所示的海浪減慢或會減少沖上岸的沉積物, 造成海岸侵蝕。這是人工島改變波浪形態而導致海岸侵蝕的一個例子。 資料來源:Smit, Mocke, Giarusso, & Baranasuriya (2008)

這張對比圖可見朱美拉棕櫚島填海後波浪形態改變導致的海岸侵蝕及淤積。相較填海工程前的海岸線(橙及 黃色線等),填海工程在2001年開始後,可見海岸線後退(綠及紅色點線等)。 來源:Smit, Mocke, Giarusso, & Baranasuriya (2008)


3. 淤積 淤積是指淤泥(即細小顆粒狀的泥沙)在海床上堆積,水流減慢是形成淤積的主因。有些人工島項目為了保 留自然海岸線,於是在人工島和海岸之間興建一條狹長的水道。然而人工島一旦出現堵塞,沿海泥沙的運輸 能力便會下降,導致水道連年出現淤積 (An, Yang, Wang & Li, 2013)。此外,填海增加水的混濁度,導致 現有的海床和生物層上出現淤積,厚度有時達數厘米 (Rahman, 2017)。 受淤積問題影響的人工島: ❖ 峇里Serangan島 (Wisha, Tanto & Husrin, 2017) ❖ 柔佛森林城市 (Rahman, 2017) ❖ 龍口灣 (An, Yang, Wang & Li, 2013) ❖ 皇京港 (Monika, 2020) ❖ 棕櫚島 (Sona, Abbas, Ali, Parvin & Hermidas, 2018) ❖ 萬寧日月灣 (MEEPRC, 2017)

Serangan島填海工程形成淤積,導致2016年(右)貝諾阿灣海水較1995年(左)淺。 來源: Wisha, Tanto & Husrin (2017) 4. 化學污染 汞和鉛等重金屬很難在水中溶化,所以會被泥沙吸收,經沉澱後成為沉積物,最終沉積物會成為一個大 “槽” (sink) ,匯聚水生系統裡的重金屬 (Algül and Beyhan, 2020)。研究發現,維多利亞港海底的沉積物含有 毒和致癌的物質,如多氯聯苯(PCBs)和三丁基錫(TBT)(Greenpeace, 2003)。這些重金屬可能經河流、大 氣沉降(汽車排放)和人類活動(工廠廢水)進入海洋。填海和挖泥工程會攪動起海床的重金屬微粒 (Nayar et al, 2004)。如果重金屬超過某個濃度,便會對海洋生物產生毒性。 另外,填充物料或會滲出污染物 (Fryer, 2021) ,或使海水的酸鹼值降低,釋放淤泥中的重金屬 (Zhang, et al., 2016) 。如果人工島排放未經處理的污水,亦會直接對海洋造成污染。 如果填海區附近出現半封閉海灣,水交換或會減少,淤泥量或會增加。環境中的污染物和有毒物質會吸附在 沉積物顆粒上,並在海灣中累積(Ren, Zhu, Sun, & Wang, 2020)。


受化學污染問題影響的人工島: ❖ 龍口灣 (Ren, Zhu, Sun, & Wang, 2020) ❖ 新加坡 (Fryer, 2021) ❖ 萬寧日月灣 (Zhang, et al., 2016)

龍口灣建設前後的潮汐流速變化。留意圖中右上角的流速在填海工程後減慢。 資料來源:ZHOU et al., (2014) 5. 珊瑚礁消失 有些人工島正正就在珊瑚礁上興建,而且當地或曾經進行疏浚,那麼珊瑚礁便會遭到清除。即使鄰近地區未 曾進行直接的疏浚工程,但由於珊瑚礁對擴散自填海區的懸浮物和沉澱物非常敏感,因此也有機會受到影 響。 珊瑚礁可降低波浪高度和底部的摩擦力,繼而減少波浪能量 (Ferrario et al., 2014),一旦珊瑚礁消失,海 岸侵蝕的情況便有可能加劇。懸浮物濃度增加、水質污染和混濁也會導致珊瑚退化,降低減浪能力,削弱保 護海岸線的珊瑚礁屏障 (Lu, 2020, Sudiarta, 2012)。 珊瑚礁正消失的人工島: ❖ ❖ ❖ ❖ ❖ ❖

峇里Serangan島 (Sudiarta, 2016) 雅加達灣 (Elyda,2015) 棕櫚島 (Salahuddin, 2006) 檳城南島 (Singh, 2021) 新加坡 (Tay., Wong, Chou & Todd 2018) 萬寧日月灣 (Zhang, et al., 2016)

填海嚴重危及人類和動物的案例 I. ●

海灘侵蝕/退化 鳳凰島 ○ 填海工程改變海浪方向,導致三亞灣西岸遭到侵蝕。中國生態環境部批評稱,三亞灣 「需 要花大量金錢來補沙」(MEEPRC, 2017)。2019年,當局為三亞灣的補沙和護灘建設項 目進行招標,「控制價」(相關部門訂下的招標價格上限)為440萬元人民幣 (CERIL, 2019)。


萬寧日月灣 ○ 2015年,月島西南側1.7公里長的海灘出現嚴重侵蝕,侵蝕最寬處長達22米,危及海南 省青皮林自然保護區。另一邊廂,連接日島和海岸的區域則出現淤積,形成340米長的海 灘地貌 (DEEHP, 2020) 。

峇里Serangan島 ○ Serangan島的填海項目竣工後,當地著名旅遊勝地薩努爾海灘(Sanur beach)遭嚴重 侵蝕 。Serangan島填海項目是導致珊瑚礁退化的一大因素,珊瑚礁退化後,令並在填 海竣工後,當地著名旅遊勝地薩努爾海灘(Sanur beach)受嚴重侵蝕 (Sudiarta, 2012) 。 棕櫚島 ○ 此人工島阻擋了波浪,沙粒無法隨波浪帶到海灘(原有沉積物運輸);使天然海灘沙粒減 少,所以毗鄰朱美拉(Jumeirah)和棕櫚島東部的海灘出現侵蝕。 ○ 發展商的前高級技術顧問證實,棕櫚島嚴重破壞海岸的沉積物運輸。據估計,棕櫚島的 存在導致杜拜65公里的天然海岸線中超過 60%均出現侵蝕,導致發展商須定期為棕櫚 島前沿的人工海灘補沙 (Salahuddin, 2006)。

II.

蓬萊西海岸海洋文化旅遊區 ○ 蓬萊西海岸海洋文化旅遊區最近落成的人工海灘亦遭到侵蝕。海灘東西兩側受到西北方 向和東北方向的海浪侵蝕 (NRPBP, 2019)。 污染

龍口灣 ○ 龍口灣人工島嚴重阻礙水流和泥沙的運輸,灣區內水流減慢,波高變小,加劇淤積問題。 陸地和龍口港的航運會產生污染物,當中的重金屬會由沉積物顆粒會吸附,並在海灣累 積起來。(Ren, Zhu, Sun, & Wang, 2020)。

雅加達灣(預測影響) ○ 雅加達灣本是13條河流的匯集處,由於填海項目中的 「巨型海堤」 預料會使水無法流走 ,令來自河流的污染物累積,雅加達灣的自我淨化能力未來或會持續下降,海堤內的水 將成為巨大的污水池,以至危及水中的生物群的生存。 (Elyda, 2015)。

峇里Serangan島 ○ 1996年,Serangan島進行填海工程,加上當地建設收費公路,旅遊活動、港口運作和沉 積物數量與日俱增,導致大量污染物透過內陸水域流入貝諾阿灣水域 (Handadari & Pranowo, 2018)。 ○ Serangan島的填海工程嚴重影響峇里南部海岸線。不少研究發現該海灣受到嚴重污染 (Kerr & Wardana, 2016)。

蓬萊西海岸海洋文化旅遊區 ○ 蓬萊西海岸海洋文化旅遊區的填海工程影響近岸水道內的水交換能力,污染物和懸浮顆 粒的消散速度變慢,導致近岸水質惡化。當地為了貪圖工程上的方便,興建了一條連接 海岸和島嶼的道路,阻擋填海區的水道,進一步減慢水流(NRPBP, 2019)。

新加坡 ○ 新加坡的海洋生態系統遭到填海物料中有毒的化學物質污染。舉例來說,填海工程中當 作填充物使用的粘土沉積物滲進周邊水域,污染水體 (Fryer, 2021)。

萬寧日月灣 ○ 填海的填充物料源自夷平山丘所得的粘土沉積物。陸地物料投入大海後,海水酸鹼值便 會降低,淤泥沉積物便會把儲存的重金屬釋放到海水 (Zhang, et al., 2016)。


V. 人工島對海洋動物的影響 ●

柔佛森林城市(海牛) ○ 柔佛森林城市由四個人工島組成。當地為連接馬來西亞大陸和人工島,修建了堤道(CG Causeway),工程範圍富生態價值,有超過38種海草和海藻,養育脆弱及受威脅的大型 物種,當中包括海牛和兩種海龜。當地政府漠視堤道分割了最大的潮間帶海草草甸,形 成一些水體流動極小的區域後所帶來的危機。填海工程開始後,草甸一帶已經由大型藻 類和泥土佔據,海草數量減少至只有幾塊。最終,當地需要清拆CG堤道,以便海流以自 然方式沖走沉積物 (Rahman, 2017)。

檳城南島(欖蠵龜、 駝背海豚)(預期影響) ○ 檳城南島填海工程計劃在檳城南部的Teluk Kumbar和Gertak Sanggul近海處填出三 個人工島。然而,該處是欖蠵龜主要的巢穴區和出沒地點 (Salleh, S. M. et al. 2012) ; 檳城島周圍的海洋生態系統亦是橄欖麗龜和駝背海豚棲息地。有當地關注團體已指出, 此填海工程造成污染,勢將擾亂牠們游泳路線 (The ASEAN Post Team, 2019)。

新加坡 (海牛) ○ 在過去的50年,新加坡的海草草甸面積減少1.6平方公里(佔總面積50%),可是海草草 甸正是受威脅物種海牛的棲息地,當中的海草更是海牛的主要食物來源。海草草甸受到 疏浚和填海工程威脅,沉積物阻擋陽光,甚至會直接掩埋動物。新加坡剩下最大的海草 草甸位於北部的仄爪哇(Chek Jawa),以及南部的Cyrene Reef和實馬高島(Pulau Semakau),但這些地點未來亦會受到新加坡的填海計劃威脅 (Ee, 2014)。

峇里Serangan島(綠海龜) ○ 當地在90年代中期進行填海工程,該島的面積從101公頃增加至481公頃,大部分綠海 龜的天然築巢地點均遭到破壞。(Sudiarta, 2016)。污染亦造成水質富營養化,綠藻叢生 ,珊瑚礁深受其害,導致珊瑚死亡 (Sudiarta, 2012)。

皇京港(玳瑁海龜) ○ 位於皇京港10公里範圍內的烏貝島是玳瑁海龜主要築巢點,填海的挖沙工程對該島造 成嚴重影響。玳瑁海龜在島上的登陸次數由2011年的111次下降到2016年的只有13次 (Dudhraj, 2019)。 ○ 松島(黑臉琵鷺、東方蠣鷸) ○ 截至2008年,松島估計已有4,000公頃潮灘遭到清除,而剩下1,000公頃的潮灘,大部分 亦會遭到填平 (Save International, n.d.)。松島的人工島項目將會進一步填平松島潮 灘,但潮灘是許多候鳥的主要駐留地點,當中包括黑臉琵鷺和東部蠣鷸等自然遺產物種 (Ko, Schubert & Hester, 2011)。

VI. 人工島對生態系統及生物多樣性的影響 填海對海洋動物的影響,顯示了施工範圍及鄰近地區的生態系統退化。除了以上列出的物理及化 學破壞之外,生物物理及生物化學環境在海洋的變化,亦拖累了海洋生態系統維持動植物群的健 康及生物多樣的能力。 在複雜及不斷變化的生態系統中,關鍵物種數量下跌,例如海牛、海龜及海豚,會改變該生境的 物種構成,或會透過生態級聯過程,導致特定物種數量銳減。是次研究針對四種受填海工程威脅 的沿海及海洋生態系統:紅樹林、潮間帶、珊瑚群落及海草草甸。 ●

紅樹林 紅樹林依靠穩定及均衡的沉積物來供應有機物質來生存。紅樹林對於波浪形態及沉積物傳輸的 改變反應敏感,任何洋流或沿岸水流受干擾,都有可能嚴重破壞生態系統。填海工程減弱傳送到 沿岸的波浪能量,導致過量沉積物堆積,令紅樹林窒息而死。另一邊廂,若沿岸的波浪能量增強


,海岸或遭過度侵蝕,以及導致紅樹林失去作為生態系統根基的沉積物及有機物質。我們身處氣 候危機當中,絕不宜低估紅樹林扮演的關鍵角色。相比起其他陸上及海洋生態系統,紅樹林能夠 儲存更大量的碳。它們亦能作為海岸及陸上地區的天然屏障,抵抗風暴潮及巨浪。 ●

潮間帶 沿海岸的潮間帶,本身結構已是多樣的棲息地,孕育大量物種。潮間帶潮漲時會被淹沒,在潮退 時則露出水面。而潮池便是指退潮後在岸邊礁石上留下的水窪,在潮間帶的較上部份形成,能夠 為海洋動物提供生存所需的水量。而近岸填海工程及人工島帶來的污染,將威脅潮間帶生態系 統。隨浪沖刷而來的污染物有可能癱瘓潮間帶物種的孕育及生存能力。潮池內的污染物或會變得 特別危險,因為當水份蒸發後,化學污染物濃度將超出生物活動的毒性臨界點。污染的影響將不 限於潮間帶,透過生物累積及生物放大作用,雀鳥、陸地捕獵者及食腐動物從潮間帶捕食受污染 的食物時,毒素有可能層層遞進地累積體內。

珊瑚群落 珊瑚礁及珊瑚群落是海洋中生物最多樣的生態系統之一。珊瑚礁及珊瑚群落的珊瑚蟲,其內部組 織是魚類、甲殼亞門、棘皮動物的食物來源。珊瑚礁的物理結構,能夠提供棲息地予各種各樣的 物種,為數之多在海洋裡數一數二。大量海洋物種與珊瑚組成共生關係,一旦珊瑚死掉,這些物 種亦會隨之消失。填海施工期間,水質變得混濁,減少能夠穿透的陽光,降低珊瑚進行光合作用 的能力。而周邊的生物將受淤積威脅,因為一旦懸浮沉積物堆積在珊瑚表面,珊瑚不但會窒息, 能夠吸收的陽光更會進一步減少,此時珊瑚的淨生產力及生存能力將受負面影響。珊瑚是珊瑚礁 生態系統裡的關鍵物種,對生態的影響遠超其他生物地龐大。只要我們失去部分甚至全部珊瑚礁 系統的珊瑚,將會大幅削減生物多樣性。

海草草甸 影響珊瑚的過程,同樣亦能威脅海草草甸。混濁的水會降低能夠穿透水柱的陽光,而淤積則會減 少可以供給水草的光。海草草甸所提供的最重要生態系統功能,包括碳截存、透過減低波浪速度 保護海岸、透過抓緊水底沙的海草根去固定海床和吸收污染物。很多家傳戶曉的物種,例如海龜 和海牛,也是以海草作為食物來源。

結論:與香港的關係 2018年,行政長官林鄭月娥提出實行大型的人工島填海項目 「明日大嶼」(ELM),並以此作為土地供應的 主要來源和未來城市發展的重點。正如上述案例顯示,世界各地的人工島項目往往會造成負面的環境影 響,強推「明日大嶼」恐引發香港三大生態危機: 首兩大危機為附近海灘會面對侵蝕或變「臭灘」;填海工程將縮小明日大嶼和大嶼山之間的水域,有可能 改變該區的波浪形態,或會引發: 1) 愉景灣、梅窩銀礦灣恐遭侵蝕 ● 如果海浪變強,情況就如上文提及的萬寧日月灣及峇里Serangan島,大嶼山附近的海灘有可能 發生海灣侵蝕,包括大白灣和三白灣、銀礦灣等或不能倖免。 2) 愉景灣、梅窩銀礦灣或變「臭灘」 ● 如果海浪變弱,沉澱物便可能越積越多,造成臭味和水質污染,這情況若發生於已是淨灘黑點的 愉景灣,積聚污染物的情況會更嚴重。絕不能低估海灘的波浪減弱後所造成的後果,本港已有一 現例 :龍尾人工沙灘出現黑沙;有專家指出正正因為水流微弱,細菌很快消耗掉水中氧氣,微生 物及細菌會在此情況下釋出二氧化硫,形成一層容易釋出臭味的缺氧黑沙。


OCEAN-HK (香港科技大學發起的水質研究團隊)的研究員曾警告稱,「明日大嶼」會造成臭味, 1 。 而且可能 「進一步削弱海水沖走污水的能力,耗盡海水氧氣」

此外,淨化海港計劃收集來自港島和九龍市區的污水,經處理後排放出海。由於水質容易受從排 放渠口排出的污水影響(Lee, Chan, Choi & Chan, 2014),官方研究視大嶼山東岸的部分地區 (包括愉景灣和梅窩)為 「次級接觸區」。可是,填海難免會改變水流,並可能影響到污水的散佈。 假如水流轉向「次級接觸區」,上述地區便會出現水質問題。值得留意的是,「明日大嶼」填海選址 正正位於排放渠口附近。

以上三幅圖為根據香港退潮水流圖2構想明日大嶼對鄰近水流的改變示意圖。 如果進入愉景灣的如果海浪變強,大嶼山附近的海灘有可能發生海灣侵蝕,包括大白灣和三白灣、銀礦灣等 或不能倖免。如果進入愉景灣的海浪變弱,沉澱物便可能越積越多,造成臭味和水質污染,這情況若發生於 已是海灘垃圾黑點的愉景灣,積聚污染物的情況會更嚴重。

1

SCMP: “Smelly harbours and lifeless waters? Lantau Tomorrow Vision reclamation could add to nearby ‘dead zone’, scientists warn” (30 Dec, 2018) https://www.scmp.com/news/hong-kong/health-environment/article/2179969/smelly-harbours-and-lifel ess-waters-lantau 2

SUSPENDED SEDIMENT IN HONG KONG WATERS - GEO REPORT No. 106 (Nov 2000). Geotechnical Engineering Office, Civil Engineering Department.


污水會首先在昂船洲進行化學處理,然後排入維多利亞港的西面引道。可見大嶼山東岸的部分地區 (包括愉景灣和梅窩)為 「次級接觸區」。 淨化海港計劃污水排放口位置資料來源:Lee, Chan, Choi & Chan (2014)。 3) 綠海龜及江豚生境恐受影響 a) 本港綠海龜恐受威脅 - 從馬來西亞皇京港的案例顯示,當地的填海工作會破壞海龜的棲息地,導致其遠處(約10 公里範圍)築巢的數量大大減少,令人擔心香港的綠海龜或會受到 「明日大嶼」 威脅。 - 南丫島深灣的沙灘是本港唯一不時有瀕危的綠海龜上岸產卵的地點,也是南中國海內為數 不多的綠海龜產卵地之一。為減少對產卵的綠海龜造成人為滋擾,政府於去年年底擴展了 深灣的限制區域及及延長限制期3。可是,深灣距離「明日大嶼」填海選址範圍只有約十多公 里,工程恐會影響綠海龜的繁殖環境,甚至從此絕跡於香港。 b) 恐影響江豚生境 - 「明日大嶼」 亦會影響另一種野生動物:江豚。江豚是本地物種,主要分佈在香港的南部和東部水 域。在1998年至2000年期間,香港進行過一項全面的研究,發現香港有217頭江豚,但這項數據已 是目前最新 (Hong Kong Dolphin Conservation Society, n.d.),亦有記錄顯示「明日大嶼」 填海 地點附近曾觀察到有江豚出沒 (Green Power, 2018)。

3

南丫島深灣沙灘現時已被指定為限制地區,在每年六月一日至十月三十一日期間,限制市民進入該範圍 內。


Working Definition for this fact-sheet: Artificial islands refers to a man-made island formed by reclamation. There are at least two ways to construct an artificial island in the narrow sense. One is to build an artificial island away from existing coastlines, while the other is to expand the existing island or combine more small islands to form a bigger island, where the area is expanded by at least one time (Zheng et al, 2020). In terms of development function, artificial islands covered in this factsheet are planned for (1) residential or (2) commercial or (3) tourist and entertainment purposes. Artificial islands planned solely/primarily for industrial purposes or transportation purposes are not included. Artificial islands in this list include those which have already been built completely or partially, under construction or to be built in the future. Major environmental Impacts of artificial islands I. Turbidity Water that contains particles causing cloudiness or muddiness is called turbid. Reclamation processes such as excavation, discharge of sediment-laden water from dredgers (IADC, 2017), and leakage of infill materials into areas adjacent to construction sites (Fryer, 2021) cause turbidity. High turbidity blocks sunlight penetration, reduces photosynthesis of marine flora such as seaweed, and lowers oxygen release in daytime. High turbidity also blocks some sea animals from seeing their food, predators, and mates. The increased particulate matter may also smother benthic (seabed) habitats (IADC, 2017). Artificial islands facing this problem: ❖ Johor Forest City (Rahman, 2017) ❖ Palm Islands (Butler, 23 August 2005 & Salahuddin, 2006) ❖ Penglai (NRPBP, 2019) ❖ Singapore (Ee, 2014)

Land reclamation in Dubai where infill materials causes turbidity in nearby water Source: Nieuwsblad Transport (2017)


Satellite image of Palm Jumeirah showing the extent of turbidity around the main breakwaters and the dredged areas (see LIDAR image below). Taken from Smit, Mocke, Giarusso, & Baranasuriya (2008)

LIDAR survey showing dredged areas around Palm Jumeirah (indicated by light blue areas where water depth is deeper than nearby seabed). Areas in dark blue are so turbid that LIDAR laser couldn’t penetrate to the seabed, and therefore rendered as the original satellite image. Taken from Smit, Mocke, Giarusso, & Baranasuriya (2008)


II. Coastal Erosion Artificial islands alter nearshore wave regimes. Some parts of the shore may experience stronger erosion due to more rapid, destructive waves with stronger backwash that removes beach materials, eating out the land bit by bit. Other coastal processes such as longshore drift (the movement of sediment brought about oblique waves) may also be altered, causing coastal erosion. (Smit, Mocke, Giarusso, & Baranasuriya, 2008). Artificial islands facing this problem: ❖ Bali Serangan Island (Sudiarta, 2012) ❖ Jakarta Bay (Elyda, 2015) ❖ Palm Islands (Salahuddin, 2006) ❖ Penglai (NRPBP, 2019) ❖ Phoenix Island (MEEPRC, 2017) ❖ Wanning Riyue Bay (DEEHP, 2020)

Wave refraction model around Palm Islands, Jumeirah. The three images simulate wave refractions of wave coming from north, north-west, and west. Blue area shows slowing of onshore wave, potentially starving the shore of sediment. This is one example where an artificial island can alter wave regime, causing coastal erosion. Source: Smit, Mocke, Giarusso, & Baranasuriya (2008)


This image shows coastal erosion and siltation before and after the reclamation of Palm Island Jumeirah, as it altered the wave regime. After reclamation work started in 2001, the shoreline retreated (see green and dark red dotted line for example), compared to the pre-Jumeirah shoreline (see orange and yellow line for example). Source: Smit, Mocke, Giarusso, & Baranasuriya (2008)

III. Siltation Siltation means the accumulation of silts (fine particles of sand and mud) in seabed, mainly caused by slowered water current. Particularly, some artificial islands design a long and narrow waterway between the artificial island and the shore to maintain the natural coastline. However, the blockage of water currents by artificial islands may lower coastal sediment transport, causing siltation within the waterway over time (An, Yang, Wang & Li, 2013). Silting can take place on top of the existing seabed and creatures, sometimes many centimetres thick (Rahman, 2017). Artificial islands facing this problem: ❖ Bali Serangan Island (Wisha, Tanto & Husrin, 2017) ❖ Johor Forest City (Rahman, 2017) ❖ Longkou Bay (An, Yang, Wang & Li, 2013) ❖ Melaka Gateway (Monika, 2020) ❖ Palm Islands (Sona, Abbas, Ali, Parvin & Hermidas, 2018) ❖ Wanning Riyue Bay (MEEPRC, 2017)


1995 (left) & 2016 (right) decrease in ocean depth (indicated by white area) in Benoa Bay because of siltation caused by reclamation of Serangan Island Source: Wisha, Tanto & Husrin (2017)

IV. Chemical contamination Heavy metals such as mercury and lead are poorly soluble in water, so they predominantly get absorbed and settle as sediment, essentially making sediments a “sink” of heavy metals in aquatic systems (Algül and Beyhan, 2020). Research found toxic and carcinogenic substances such as polychlorinated biphenyls (PCBs) and tributyltin (TBT) in the sediment on the seabed of Victoria Harbour (Greenpeace, 2003). The heavy metals may enter the sea through riverine influx, atmospheric deposition (cars emission) and anthropogenic activities (factories’ waste water). Reclamation and dredger stir up heavy metal particulates on the seabed (Nayar et al, 2004). If exceeding threshold concentrations, the heavy metals can be toxic to sea organisms. Contamination can also come from the infill material through seepage (Fryer, 2021), or through a lowered pH value of seawater releasing heavy metals from the silt (Zhang, et al., 2016). Wastewater discharged from the artificial island will also directly pollute the sea if not treated properly. Semi-closed bay near reclamation may experience reduced water exchange and increased siltation. That pollutants and toxic substances in the environment adsorbed to sediment particles and accumulated in the bay. (Ren, Zhu, Sun, & Wang, 2020). Artificial islands facing this problem: ❖ Longkou Bay (Ren, Zhu, Sun, & Wang, 2020) ❖ Singapore (Fryer, 2021) ❖ Wanning Riyue Bay (Zhang, et al., 2016)


Change in tidal current velocity before (left) and after (right) the construction of Longkou Bay. Notice how tidal current at the upper right corner of the diagram slowed down after the reclamation. Source: ZHOU et al., (2014)

V. Coral Reef Removal Coral reefs are removed when artificial islands are built directly on them or in the dredging process. Coral reefs in adjacent areas that are not directly dredged may also be affected owing to their sensitivity to suspended and settled sediment spreading from reclamation sites. Coral reef removal may also exacerbate coastal erosion as coral reef barriers help reduce wave energy by reducing wave height and by bottom friction etc (Ferrario et al., 2014). Increased suspended sediment concentration and pollution also causes coral degradation (Lu, 2020; Sudiarta, 2012). Artificial islands facing this problem: ❖ Bali Serangan Island (Sudiarta, 2016) ❖ Jarkata Bay (Elyda, 2015) ❖ Palm Islands (Salahuddin, 2006) ❖ Penang South Island (Singh, 2021) ❖ Singapore (Tay., Wong, Chou & Todd 2018) ❖ Wanning Riyue Bay (Zhang, et al., 2016) Cases of significant hazards to human and animal III.

Beach erosion / deterioration

Phoenix Island ○ The reclamation alters wave directions, leading to erosion of the western coast of Sanya Bay. The Ministry of Ecology and Environment of the People Republic of China criticized that “vast amounts of money needed to be spent for sand replenishment” (MEEPRC, 2017) in Sanya Bay. In 2019, a construction project has invited tender for sand replenishment and beach protection construction in Sanya Bay with control price of 4.4 million RMB (CERIL, 2019).

Wanning Riyue Bay ○ In 2015, the coastal beach with a length of 1.7 km in the south west side of the Yue Island experienced serious erosion with the widest point having 22 m erosion. It has a negative impact on the Provincial Qingpilin Nature Reserve. At


the same time, the area connecting the Ri Island and the shore occured siltation and formed a beach of 340 m long. (DEEHP, 2020) ●

Bali Serangan Island ○ The construction of Serangan Island has directly or indirectly induced the erosion of nearby Sanur beach, which is a famous tourist destination. The reclamation of Serangan Island is a contributing factor to the degradation of the “barrier” coral reef, resulting in serious erosion at Sanur beach after the reclamation (Sudiarta, 2012).

Palm Island ○ The artificial island blocked the wave which transports sand to the beaches (original sediment transport), leading to erosion at the beaches adjacent to Jumeirah and east of The Palm. ○ The former senior technical advisor of the developer confirmed that The Palm Islands severely disrupted sediment transport along the shore, starving over 60% of Dubai’s 65km of natural shoreline of sand. As a result, the developer periodically replenishes the artificial beach at the Palm’s fronds (Salahuddin, 2006).

Penglai West Coast Marine Cultural Tourism Area ○ The recently built artificial beaches in Penglai West Coast Marine Cultural Tourism Area were eroded. The western and eastern side of the beach was eroded by north-west facing waves and north-east facing waves (NRPBP, 2019).

IV.

Pollution

Longkou Bay ○ The artificial island generated a strong blocking effect on the water flow and the transport of sediment in the Longkou Bay, which made the current velocity and wave height of the bay area smaller, and has led to increased siltation. Heavy metals from land-based pollutants and the shipping pollutants in Longkou Port are adsorbed by sediment particles and then accumulated in the bay. (Ren, Zhu, Sun, & Wang, 2020).

Jarkata Bay (predicted impact) ○ As the “Giant Sea Wall” in this reclamation project will trap water, the self-purification of Jakarta Bay may continue to decline. The pollutants deposited by 13 rivers in Jakarta would accumulate in one place. The accumulation would cause eutrophication that would be fatal for the biota in the water. The water inside the seawall would become a big pond of pollution (Elyda, 2015).

Bali Serangan Island ○ Serangan Island reclamation in 1996 damaged and polluted the waters of Benoa Bay due to road construction, pollutants from tourism activities, port activities, and increased sedimentation (Handadari & Pranowo, 2018). The Serangan Island reclamation has had a severe impact on Bali’s southern coastline. Studies have concluded that the bay is heavily polluted (Kerr and Wardana, 2016)

Penglai West Coast Marine Cultural Tourism Area ○ Penglai West Coast Marine Cultural Tourism Area’s reclamation works altered water exchange inside the near shore waterway and slowed down the dissipation of pollutants and suspended particles. As a result, the near shore


water quality deteriorated. An impervious road to connect the shore and the island for the sake of engineering convenience blocked the waterway of the reclamation site and further decreased the current velocity (NRPBP, 2019). ●

Singapore ○ The toxic chemicals present in infill substances polluted Singapore’s marine ecosystems. For example, clay sediment used in infill in reclamation projects seeping into surrounding waters and contaminating the water (Fryer, 2021).

Wanning Riyue Bay ○ The infill materials are made of clay sediment from razing the hills. When terrestrial materials enter the sea, it will decrease the pH of the sea water. As a result, the heavy metals stored inside silt sediment were released into the sea water (Zhang, et al., 2016).

V.

Impacts on Sea Animals

Johor Forest City (Sea Cow) ○ Johor Forest City is composed of four artificial islands. The CG Causeway, which was built to connect Malaysia mainland to an artificial island, divided the largest intertidal seagrass meadow and created some areas with minimal water movement. Over 38 species of seagrass and seaweed there support the existence of large vulnerable and threatened species such as sea cow and two types of turtle. After the reclamation began, the meadow has transformed into a largely macroalgae and mud area, with the seagrass reduced to mere patches. Eventually, the CG Causeway needs to be removed in order to allow the sediment to be washed away naturally by the currents (Rahman, 2017).

Penang South Island (Olive Ridley Turtle, Humpback Dolphin) (predicted impact) ○ Penang South Reclamation Project involved reclaiming three artificial islands from the sea near Teluk Kumbar and Gertak Sanggul in south Penang, which is one of the few nests and tracks for Olive Ridley (Salleh, S. M. et al., 2012) The marine ecosystem surrounding Penang Island is the habitat of the Olive Ridley Turtle and Indo-Pacific Humpback Dolphin. The pollution and contamination caused by the reclamation will disrupt their swimming paths (The ASEAN Post Team, 2019).

Singapore (Sea Cow) ○ In the past 50 years, Singapore’s seagrass meadows have decreased by 1.6 sq km, nearly half of countries’ total, which is the habitat of vulnerable sea cows. Seagrass is also the main food source of sea cows. Seagrass meadows are threatened by dredging and reclamation works where sediments block sunlight or works that directly bury them. The remaining largest stretches of seagrass meadows of Singapore are at Chek Jawa in the north, Cyrene Reef and Pulau Semakau in the South and they are now threatened by Singapore's future reclamation plan in the area (Ee, 2014).

Bali Serangan Island (Green Turtle) ○ The reclamation in the mid-90s increased the island size from 101 ha to 481 ha and directly destroyed much of the natural nesting sites of the green turtle. (Sudiarta, 2016). The coral reefs were especially affected by the eutrophication caused by pollution leading to the growth of green algae that in turn kills corals (Sudiarta, 2012).


Melaka Gateway (Hawksbill Turtle) ○ Pulau Upeh Island, within the 10-km radius of the Melaka gateway, is a major nesting site for the Hawksbill Turtles. It has been impacted immensely by sand dredging. Hawksbill turtle landings on the island decreased from 111 in 2011 to only 13 in 2016 (Dudhraj, 2019).

Songdo (Black-faced Spoonbill, Eastern Oystercatcher.) ○ In 2008, an estimated 4,000 hectares of the Songdo Tidal Flats were already removed, and most of the remaining 1,000 hectares were about to be filled (Save International, n.d.). Songdo (the artificial island) required filling Songdo Tidal Flat, an important stopping ground for many migratory birds, including natural heritage species such as the black-faced spoonbill and eastern oystercatcher (Ko, Schubert & Hester, 2011).

VI.

Impact on Ecosystems and biodiversity The impact of land reclamation on sea animals is indicative of marine ecosystem degradation in areas adjacent to and in the vicinity of the reclamation site. Besides the physical and chemical damages listed above, changes to the biophysical and biochemical environment in the ocean adversely affect the ability of marine ecosystems to support healthy and biodiverse communities of flora and fauna.

Decline in the populations of keystone species in complex and dynamic ecosystems, such as dugongs (sea cows), sea turtles, and dolphins, alters species composition in the habitats and can cause the decimation of certain species through the process of ecological cascade. Our case studies highlight four types of coastal or marine ecosystems that experience degradation as a result of land reclamation. These are mangroves, intertidal zones, coral colonies, and seagrass meadows. ●

Mangroves Mangrove forests require a constant and well-balanced influx of sediment to sustain themselves. The incoming sediment contributes with organic matter that is essential for the survival of the mangrove stands. Mangroves are sensitive to changes in wave regime and sediment transport, and any disruptions to oceanic or coastal currents can have a devastating impact on the ecosystem. A decrease in wave energy to coastal areas as a result of land reclamation projects can cause sediment overload that smothers the mangrove stands and causes die-off. On the other hand, increase in wave energy can cause excessive erosion and deprive the mangrove forests of sediment and organic matter that serve as the foundation of the ecosystem. In the midst of a climate crisis, the importance of mangroves cannot be understated. Mangrove forests store tremendous amounts of carbon compared to other terrestrial and marine ecosystems, and they act as a barrier of protection for coastal and terrestrial areas against storm surges and strong wave actions.

Intertidal zones Submerged during high tides and exposed during low tides, intertidal zones along marine shorelines are structurally diverse habitats that host a wide array of species. Tide pools are formed in the upper part of the intertidal zone when the tide retreats, and these pools provide refuge for marine animals that need water to survive. Pollution from nearshore reclamation and artificial islands threaten the intertidal ecosystem by introducing contaminants that can jeopardise the fecundity and survivability of intertidal species. Contaminants in tide pools can be particularly


dangerous when the water evaporates and the amount of chemical contaminants exceeds toxicity threshold concentration for biological activity. The impact of pollution is not limited to the intertidal zone; birds, terrestrial predators and scavengers risk toxic accumulation by bioaccumulation and biomagnification when they feed on contaminated food sources in the intertidal ecosystem. ●

Coral colonies Coral reefs and (to a lesser extent) coral colonies are some of the most biodiverse ecosystems in the ocean. The inner tissues of coral polyps in both coral colonies and reefs provide a source of food for fishes, crustaceans, and echinoderms, and the physical structure of the coral reefs provide habitat for a wide variety of species unmatched in most marine habitats. An array of marine species forms symbiotic relationships with corals and they would disappear if the corals died. The construction phase of land reclamation projects causes turbid waters restricting sunlight penetration to a degree that inhibits the photosynthetic ability of corals. The suspended sediment that settles on the coral exposes the organisms to siltation stress by smothering the corals and further reducing sunlight availability, which adversely affect net productivity and survivability. Corals are keystone species in coral reef ecosystems with a disproportionately large impact on the ecosystem as compared to other organisms, and the partial or complete loss of corals within reef ecosystems can decimate biodiversity.

Seagrass meadows The same processes that affect corals also threaten seagrass meadows. Turbid waters reduce sunlight penetration in the water column and siltation reduces light availability for seagrass. The loss of seagrass meadows would mean the loss of the ecosystem functions that they provide. Carbon sequestration, coastal protection through reduction of wave speed, seabed protection through the roots of seagrass that anchors underwater sand, and absorption of pollutants are amongst the most significant ecosystem functions that seagrass meadows provide. Many iconic species such as sea turtles and dugongs also depend on seagrass as a food source.

Conclusion: Relevance to Hong Kong A mega artificial island reclamation project, “East Lantau Metropolis” (“ELM”) was proposed by the Chief Executive, Carrie Lam, as a major source of land supply and a focus of future urban development in 2018. As the cases above have shown, negative environmental impacts are seen recurring in artificial islands projects all over the world. If Hong Kong’s ELM is forcefully put forward, Hong Kong’s environment may face three major problems. The first two problems are beach erosion and smell problem at Discovery Bay and Mui Wo. The reclamation will narrow the water channel between the ELM and Lantau Island, and alter the wave regime in the area, potentially leading to: 1) Coastal Erosion at Discovery Bay and Mui Wo ● If the waves entering Discovery Bay become stronger, more erosion might occur at beaches like Tai Pak Beach and Sam Pak Beach, leading to beach erosion as the cases Wanning’s Riyue Bay and Bali’s Serangan Island have shown. 2) “Stinky Bay” at Discovery Bay and Mui Wo ● If the water waves entering Discovery Bay become weaker, sedimentation may be stronger, potentially leading to smelly conditions and water pollution. This is particularly so as Discovery Bay has long been known as a beach cleanup blackspot.


The effect of weak currents on beaches should not be underestimated. Weak current is one of the factors for the smelly black sand at the newly built Lung Mei beach. Due to weak currents, oxygen is quickly used up by the bacteria, causing the release of sulphur dioxide and the presence of smelly and black anoxic layer.

Researchers from the Ocean-HK (a research team from HKUST) study team have previously warned of smelly conditions caused by ELM as the project could “further weaken the sea’s ability to flush out waste water, causing oxygen depletion”.

Moreover, part of the east coast of Lantau Island, including Discovery Bay and Mui Wo, is regarded as a “secondary contact zone” by official study since its water quality is sensitive to the sewage discharged from HATS Outfall (Lee, Chan, Choi & Chan, 2014). The reclamation inevitably alters the water current and probably affects the dispersal of the sewage. If the water current is diverted towards secondary contact zones, those areas will experience more severe water quality problems.

Illustration of how ELM might alter nearby current regime with reference to Hong Kong’s tidal current. If the waves entering Discovery Bay become stronger, more erosion might occur at beaches like Tai Pak Beach and Sam Pak Beach. If the water waves entering Discovery Bay become weaker, sedimentation may be stronger, potentially leading to smelly conditions and water pollution. This is particularly so as Discovery Bay has long been known as a beach cleanup blackspot.


The Harbour Area Treatment Scheme (HATS) collects sewage from urban areas of Hong Kong Island and Kowloon. The sewage is then processed in Stonecutters Island for chemical treatment and discharged into western approaches of Victoria Harbour (see figure below). The Tomorrow Lantau reclamation project is located near the HATS Outfall. Location of HATS Outfall Source: Lee, Chan, Choi & Chan (2014)

3) Green Turtles and Finless Porpoise potentially threatened a) Green Turtles: - As the Maleka Gateway case showed that even reclamation in the area can greatly affect the nesting number of a distant (10km) nesting site because of the disruption brought to its habitat, it is worried that green turtles in Hong Kong might be threatened by “Lantau Tomorrow”, which is also about 10km apart. - Sham Wan in Lamma Island is recognised as a nesting site for green turtles (Ng et al., 2014). It is the only site in Hong Kong and one of the few sites in South China Sea at which Green Turtles nest from time to time. Only last year, the government ahs expanded the Restricted Area and extended the restricted period in Sham Wan to further protect Green Turtle from human interferences. b) Finless Porpoise: Finless porpoise is a native species and mainly occurs in southern and eastern water of Hong Kong. During 1998 to 2000, a comprehensive study found 217 finless porpoises in Hong Kong, which is the most updated data at present (Hong Kong Dolphin Conservation Society, n.d.). It is also recorded that finless porpoise was seen near the location of reclamation of “Lantau Tomorrow” (Green Power, 2018). -


Artificial Islands 人工島 Name 名稱

Country 國家

1. Bali Serangan Island 峇里Serangan島

Indonesia 印尼

2. Jarkata Bay (planning stage) 雅加達灣(規劃階段)

Indonesia 印尼

3. Johor Forest City 柔佛森林城市

Malaysia 馬來西亞

4. Longkou Bay 龍口灣

China 中國

5. Melaka Gateway 皇京港

Malaysia 馬來西亞

6. Palm Islands 棕櫚島

UAE 阿聯酋

7. Penang South Islands (planning stage) 檳城南島(規劃階段)

Malaysia 馬來西亞

8. Penglai 蓬萊

China 中國

9. Phoenix Island 鳳凰島

China 中國

10. Singapore (multiple) 新加坡(多個地點)

Singapore 新加坡

11. Wanning Riyue Bay 萬寧日月灣

China 中國

Total 總計

Environmental Impacts 環境影響

Human & Animal Hazards 對人類及動物的危害

I. Turbidity 混濁度

II. Siltation 淤積

III. Coastal Erosion 海岸侵蝕

IV. Chemical contamination 化學物污染

V. Coral Reef Removal 珊瑚礁消失

I.Beach erosion / deterioration 海灘侵蝕/退化

II. Pollution / Odour 污染/氣味問題

III. Impacts on Sea Animals 對海洋動物的影響

5

6

6

3

7

5

6

5


Reference 參考資料 Algül, F., Beyhan, M. Concentrations and sources of heavy metals in shallow sediments in Lake Bafa, Turkey. Sci Rep 10, 11782 (2020). https://doi.org/10.1038/s41598-020-68833-2 An Y. N., Yang K., Wang Y., & Li, J. (2013). Effect on Trend of Coastal Geomorphological Evolution after Construction of Artificial Islands in Longkou Bay. Advanced Materials Research, 726-731, 3308–3312. Butler T. (2005, August 23). Dubai’s artificial islands have high environmental cost. Mongabay. Retrieved from https://news.mongabay.com/2005/08/dubais-artificial-islands-have-high-environmental-c ost/ Capital Engineering and Research Incorporation Limited [CERIL] (2019). 三亚湾人工补沙实验段 拦沙堤工程项目(施工)招标公告. Retrieved From https://www.mayitb.com/purchasenotice/one?purchasenoticeid=318382582 Department of Ecology and Environment of Hainan Province [DEEHP] (2020, June 28). 海南省生 态环境厅 贯彻落实国家海洋督察整改任务(序号60)整改完成情况公示表. http://hnsthb.hainan.gov.cn/xxgk/0200/0202/hjzl/hyhjzl/202006/t20200628_2809982.html Dudhraj A. (2019). Understanding the environmental Implications of Belt and Road Initiative Projects : A Focus on Southeast Asia. [Master Thesis: Flinders University, South Australia]. https://flex.flinders.edu.au/file/0610fb3b-cd68-43fb-9eb2-45577a73dbeb/1/Dudhraj%20Thesis% 202019.pdf Ee D. (2014, July 12). Singapore’s seagrass meadows at risk from reclamation. The Straits Times. Retrieved from https://www.straitstimes.com/singapore/environment/singapores-seagrass-meadows-at-r isk-from-reclamation Elyda C. (2015, October 7). Sea wall an environmental disaster: Study. The Jakarta Post. Retrieved From https://www.thejakartapost.com/news/2015/10/07/sea-wall-environmental-disaster-study. html Ferrario, F., Beck, M., Storlazzi, C. et al. (2014) The effectiveness of coral reefs for coastal hazard risk reduction and adaptation. Nat Commun 5, 3794 (2014). https://doi.org/10.1038/ncomms4794 Fryer J. (2021, April 27). Environmental Impacts of Land Reclamation in Singapore. Retrieved from https://storymaps.arcgis.com/stories/83d97f8f26f047a8844516939c4aa445 Greenpeace (2003). f. Greenpeace Submission to Panel on Environmental Affairs & Panel on Planning, Lands and Works Legislative Council HKSAR (Joint Meeting on 27 November 2003). Green Power (2018). hidden black pearl: Finless porpoise (隱藏的黑珍珠 ─ 江豚). Online article. Retrieved From: https://www.greenpower.org.hk/html5/chi/ws_132.shtml


Handadari A. S. K. and Pranowo W. S. (2018). Analysis of marine and coastal resources sustainability in Benoa coastal bay reclamation site, Bali. E3S Web Conf., 74. Hong Kong Dolphin Conservation Society (n.d). Cetaceans in Hong Kong: Finless porpoise. Online article. Retrieved From https://hk.hkdcs.org/dolphins-whales/finless-porpoise/ International Association of Dredging Companies [IADC] (2017). Facts About: Turbidity and Dredging. Retrieved From https://www.iadc-dredging.com/facts-about/turbidity-dredging/ Kerr T. & Wardana A. (2020). Utopian resort living: islands of reclamation and environmental resistance in Bali and Western Australia. Journal of Tourism and Cultural Change. Ko Y., Schubert D. & Hester R. (2011). A conflict of greens: Green development versus habitat preservation – The case of Incheon, South Korea. Environment:Science and Policy for Sustainable Development, 53: 3, 3 — 17. —— Lee J. H. W., Chan S. N., Choi K. W. & Chan P. K. (2014). Application of the WATERMAN Real-Time Coastal Water Quality Management System to Environmental Engineering and Control. [Technical Paper of Drainage Services Department, HKSAR] Leung Q. N. (2020). Sanyarb Bay replenishment (三亞灣人工補沙). Sanyarb News Website (三亞 新聞網). Retrieved from https://www.srxhgx.com/content/2020-07/29/content_505733.html Lu, X. (2020) It Is Different This Time. Landscape Architecture Frontiers. 8(4), 150-151. https://doi.org/10.15302/J-LAF-1-050024 Monika A. (2020 April 8). Reclaiming the sea from the Melaka Gateway. New Mandala. Retrieved From https://www.newmandala.org/reclaiming-the-sea-from-the-melaka-gateway/ Ministry of Ecology and Environment of the People Republic of China [MEEPRC]. (2017, December 23), 中央第四环境保护督察组向海南省反馈督察情况. https://www.mee.gov.cn/gkml/sthjbgw/qt/201712/t20171223_428535.htm Natural Resources and Planning Bureau of Penglai [NRPBP] (2019). 蓬莱国家级海洋公园范围及功 能区调整申报书. Nayar, S., Goh, B. P. L., & Chou, L. M. (2004). Environmental impact of heavy metals from dredged and resuspended sediments on phytoplankton and bacteria assessed in in situ mesocosms. Ecotoxicology and Environmental Safety, 59(3), 349–369. doi:10.1016/j.ecoenv.2003.08.015 Ng C. K., Dutton P. H., Chan S. K., Cheung K., Qiu, J., & Sun Y. (2014). Characterization and Conservation Concerns of Green Turtles (Chelonia mydas) Nesting in Hong Kong, China. Pacific Science, 68(2), 231–243. Nieuwsblad Transport (2017 July 9). Mega job for Van Oord in Dubai. Retrieved From https://www.nt.nl/bedrijfsnieuws/2017/07/19/megaklus-voor-van-oord-in-dubai/?gdpr=accept Rahman S. (2017). Johor's Forest City Faces Critical Challenges. ISEAS–Yusof Ishak Institute.


Ren P., Zhu H., Sun Z., & Wang C. (2020). Effects of Artificial Islands Construction on the Spatial Distribution and Risk Assessment of Heavy Metals in the Surface Sediments from a Semi-closed Bay (Longkou Bay), China. Bulletin of Environmental Contamination and Toxicology, 106(1), 44–50. Salahuddin B. (2006). The Marine Environmental Impacts of Artificial Island Construction. [Master's Projects, Duke University]. Salleh, S. M., Yobe, M., & Sah, S. A. (2012). The Distribution and Conservation Status of Green Turtles (Chelonia mydas) and Olive Ridley Turtles (Lepidochelys olivacea) on Pulau Pinang beaches (Malaysia), 1995-2009. Tropical life sciences research, 23(1), 63–76. Save International (n.d.). Song Do (Songdo) Tidal Flats. Retrieved From https://saveinternational.org/saveinaction/song-do-tidal-flats/ Singh R. (2021 July 3). Denial of the undeniable by blind supporters of Penang South Reclamation. Aliran. Retrieved From https://m.aliran.com/thinking-allowed-online/denial-of-the-undeniable-by-blind-support ers-of-penang-south-reclamation/ Smit F., Mocke G.P., Giarrusso C.C., & Baranasuriya P.W. (2008). Coastal modelling of the Dubai coastline with emphasis on morphological model validation. Seventh International Conference on Coastal and Port Engineering in Developing Countries. Sona G., Abbas P., Ali Z., Parvin F. & Hermidas, B. (2018). Geopolitical and environmental study of artificial islands in the Persian Gulf. Ukrainian Journal of Ecology Vol 8(1):130-140. Sudiarta I. K. (2012). Sustainable Tourism Development: Case Study in Denpasar Municipality, Bali, Indonesia. Tropical Coats Vol. 17 No. 2. Sudiarta I. K. (2016). Coral Restoration and Conservation in Serangan Island, Denpasar City, Bali, Indonesia: Turning Coral Miners into Conservation Advocates. PEMSEA. In Chua, T.-E., L.M. Chou, G. Jacinto, S.A. Ross, and D. Bonga. (Editors). 2018. Local Contributions to Global Sustainable Agenda: Case Studies in Integrated Coastal Management in the East Asian Seas Region. Tay Y. L. J. Wong S., Chou L. & Todd P. (2018). Land reclamation and the consequent loss of marine habitats around the Ayer Islands, Singapore. Nature in Singapore Vol 11 1-5. The ASEAN Post Team (2019 June 23). Penang’s New Islands Will Kill Marine Life. The ASEAN Post. Retrieved From https://theaseanpost.com/article/penangs-new-islands-will-kill-marine-life. Wisha U.J., Tanto T.A., Pranowo W.S., Husrin S. (2017). Current movement in Benoa Bay water, Bali, Indonesia: Pattern of tidal current changes simulated for the condition before, during, and after reclamation. Regional Studies in Marine Science Volume 18, February 2018. Xing Y. (2018 January 15). 31封环保督察意见发出后 引发关注的高层问责开始出现. Xin Hua Net. Retrieved From http://www.xinhuanet.com/politics/2018-01/15/c_1122257316.htm.


Zhang C., Jia H., Zheng Z., Lin, L., Li S., Wang P. & Xie J. (2016). Countermeasures and Analysis on the Positive and Negative Environmental Effect of Offshore Artificial Island Reclamation: A case Study of Artificial Island Project of riyue Bay Hainan. Transactions of Oceanology and Limnology No. 2. Zheng J., Pan Cun-hong, Y W., Mu J. & Zhao X., (2020). Analysis on the current situation and key problems of artificial island development in China. IOP Conference Series: Earth and Environmental Science Vol. 510. ZHOU G. Z., FENG X L., LIU J., LIU X., & XU F. (2014). Prediction of erosion evolution and deposition in the east coast of the Laizhou Bay after the implementation of the coastal planning. Marine Sciences / Vol. 38, No. 1.


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.