Petroleum Today Magazine 25

Page 1

Not For Sale - New Vision

-

Vo l u m e 2 5 th D e c e m b e r 2 0 1 5

w w w. f a c e b o o k . c o m / P e t r o l e u m To d a y M a g a z i n e

Petroleum Today Predicting Water in the Crest of a Giant Gas Field

Optimizing drilling operation by using Geosteering Technology

Latest technology Subsea measuring tool

New Products

"‫فك ��رة تطرحه ��ا "برتوليم توداي‬

‫الـجامعـةامل�سـريـةللبرتول‬

‫ال�سعودية لـن تـخـفـ�ض‬ ‫انـتـاجـهـا مـن الـنـفـطـ‬

‫هـــل تــ�ــســبــح مــ�ــســر مــركــز‬ ‫حمـــــورياإقليمــيللطاقـة؟‬

Jackup Drilling Rig | Artificial-Lift Foamers | Chemical-Injection System | Magnetic Thickness Detector | Centralizer




German Oil Free & Oil Lubricated Screw Compressors

German High Pressure Air & Gas Compressors & Purification

Head Office: 43 Asmaa Fahmy St., - Ard El Golf Heliopolis - Cairo - Egypt Tel/Fax: (+202) 2419 6289 – 2415 6964 E-mail: pressure@tedata.net.eg www.pressuretechegypt.com





‫‪International Drilling Material‬‬ ‫‪Manufacturing Co. S.A.E‬‬

‫ال�صركــــة العامليــة لت�صنيــع مهمــــات احلفــــــر‬ ‫ا�ستمرارلدور ال�سركة �سمن املنظومة املتكاملة للت�سنيع املحلى باال�سرتاتيجية‬ ‫الطموحة لقطاع البرتول امل�سري التي ت�سعى بها اإىل حتقيق وتوفري اأدوات ومهمات‬ ‫اإنتاج �سناعة البرتول والغاز وتطويرها لتحقيق التكامل لهذه ال�سناعة ‪ ،‬فقد‬ ‫ا�ستمرت ال�سركة يف قبول حتدياتها يف عامها اخلام�س على التواىل منذ بدء الت�سغيل‬ ‫واالنتاج رغم ما تواجهه من انخفا�س ال�سوق و انخفا�س اعمال احلفر للإبار‬ ‫بال�سركات االنتاجية‪ ،‬فبعدما ا�ستطاعت ال�سركة يف االعوام ال�سابقة من ك�سب ثقة‬ ‫عملوؤها ‪ ،‬وو�سع اأ�سمها �سمن امل�سنعني واملوردين للـ ‪ Casing‬لل�سركات ‪ ،‬ومتكنت‬ ‫من حتقيـق تعاقدات و�سـلت اإلـى اأكثـر من ‪ 163‬مليون دوالر حتى تاريخه‪.‬‬ ‫وا�ستمرارنا للنجاح متكنت ال�سركة من الفوز ببع�س البنود فى املناق�سات الكربى‬ ‫ل�سركات برتو�سنان و برتوجلف وبرج العرب وذلك باالإ�سافة اىل ما تبقى من اأوامر‬ ‫توريد ل�سركة بدر الدين و عجيبة وعملء اأخرين بلغت قيمتها االجمالية حواىل ‪24‬‬ ‫مليون دوالر �سيتم تنفيذها طبقاً الجتياحات العملء و برامج و مواعيد التوريدات‪.‬‬ ‫قامت اإدارة ال�سركة يف البدء يف تنفيذ و ا�ستكمال امل�سروع و اإن�ساء املرحلة الثانية خلط‬ ‫املعاجلة احلرارية با�ستثمارات ت�سل ايل ‪ 40‬مليون دوالر بعد زيادة راأ�س املال املرخ�س‬ ‫لل�سركة اىل ‪ 50‬مليون دوالر لتدعيم موقف ال�سركة واأي�ساً قامت اإدارة ال�سركة بفتح‬ ‫ا�سواق جديدة الإنتاجها بال�سعي للم�ساركة يف توريد املوا�سري الأبار املياه �سمن امل�سروع‬ ‫القومي للدولة ال�ست�سلح مليون فدان (‪ 5000‬بئر) وقد متكنت ال�سركة من بالفوز‬ ‫فى مناق�سة �سينوثروة بتوريد موا�سري ‪ 400‬بئر للم�سروع القومى ال�ست�سلح ‪5000‬‬ ‫فدان وبداأت عملية التنفيذ بالتعاون من �سركة �سينوثروة ال�سقيقة ‪.‬‬

‫‪www.idm.com.eg‬‬

‫‪mydesign.com.eg‬‬

‫‪Cairo Office‬‬ ‫‪6/ 10 El-Sefarat District In Front of Free Zone,‬‬ ‫‪Nasr City, Cairo, Egypt‬‬ ‫‪Phone: +202 23524941 Fax: +202 23524934‬‬

‫‪Head Office & Plant‬‬ ‫‪Suez, Sokhna Road, Kilo 41 - Industrial Area‬‬ ‫‪Phone: 062 3710206 Fax: 062 3710207‬‬


BAUER KOMPRESSOREN EGYPT LTD. Main office: 1, Road 273, New Maadi, Cairo, Egypt Tel. & Fax 02 / 2704 - 9755 - Mob. 01068835379 Hurghada Branch: El-Nasr street, El-Dahar, Hurghada – Red Sea, Egypt Tel. & Fax 065 / 355 - 2747

www.bauer-compressors.com.eg info@bauer-compressors.com.eg


Petroleum PetroleumToday Today http://www.facebook.com/PetroleumTodayMagazine http://www.facebook.com/PetroleumTodayMagazine

Contents Contents 99 10 10 20 20 28 28 42 42 60 60 62 62

Politics Politics AndAnd Price Price Reduction Reduction News News New New Products Products Optimizing Optimizing drilling drilling operation operation by using by using Geosteering Geosteering Technology Technology Predicting Predicting water water in the in the crest crest of aofgiant a giant gasgas field: field: Ormen Ormen Lange Lange Hydrodynamic Hydrodynamic Aquifer Aquifer Model Model Latest Latest technology technology Subsea Subsea measuring measuring tooltool Industry Industry At AAtGlance A Glance

‫ر ر‬

1414 ‫وإنجي‬ ‫وإنجي‬ ‫بيبي‬ ‫وبي‬ ‫وبي‬ ‫إيني‬ ‫إيني‬ ‫معمع‬ ‫اتفاقيات‬ ‫اتفاقيات‬ 5 ‫توقع‬ 5 ‫توقع‬ ‫البترول‬ ‫ البترول‬2 2 ‫وأباتشى‬ ‫وأباتشى‬ ‫للطاق�ة ؟‬ ‫للطاق�ة ؟‬ ‫إقليم�ي‬ ‫إقليم�ي‬ ‫مح�وري‬ ‫مح�وري‬ ‫مركز‬ ‫مركز‬ ‫مصر‬ ‫مصر‬ ‫تصبح‬ ‫تصبح‬ ‫هلهل‬

44 ‫معدالته‬ ‫معدالته‬ ‫العلى‬ ‫العلى‬ ‫يرتفع‬ ‫يرتفع‬ ‫والغاز‬ ‫والغاز‬ ‫الزيت‬ ‫الزيت‬ ‫منمن‬ ‫الدين‬ ‫الدين‬ ‫بدربدر‬ ‫انتاج‬ ‫انتاج‬ 55 ‫عام‬ ‫عام‬ 15 ‫خالل‬ 15 ‫خالل‬ �‫ال�ن�ف�ط‬ �‫ال�ن�ف�ط‬ ‫م�نم�ن‬ ‫ان�ت�اج�ه�ا‬ ‫ان�ت�اج�ه�ا‬ ‫ت�خ�ف�ض‬ ‫ت�خ�ف�ض‬ ‫ل�نل�ن‬ ‫السعودية‬ ‫السعودية‬

»‫توداي‬ »‫توداي‬ ‫«بتروليم‬ ‫«بتروليم‬ ‫تطرحها‬ ‫تطرحها‬ ‫فكرة‬ ‫فكرة‬ ‫��رول‬ ‫��رول‬ �‫��ب���ت‬ �‫��ل���ت‬ �‫��ة��ل�ل���ب‬ �‫��ة����ل‬ �‫��ري‬ �����‫��ري‬ �����‫��ص‬ �����‫��ص‬ �‫��م���م‬ ‫��ة ال‬ �‫��ة����ال‬ �‫��ع‬ �����‫��ام‬ ‫��ام���ع‬ �‫��ج����ج‬ ����‫ال�����ال‬

88

1212

‫مديرعام‬ ‫مديرعام‬ ‫بخيت‬ ‫بخيت‬ ‫طهطه‬ ‫هش���ام‬ ‫هش���ام‬ ‫المحاس���ب‬ ‫المحاس���ب‬ ‫معمع‬ ‫حوار‬ ‫حوار‬ ‫مصر‬ ‫مصر‬ ‫بترومين‬ ‫بترومين‬


‫تقديـر‬ ‫شـكر وو تقديـر‬ ‫شـكر‬ ‫‪ Petroleum Today‬تتقدم بخالص الشكر والتقدير اىل السادة التايل أسمائهم ملا قدموه وما زالو يقدموه‬ ‫من إسهامات قيمة للمجلة منذ خروجها للنور عرب كتابة املقاالت العلمية وطرح الرؤى الفنية اخلاصة بتطوير‬ ‫وحتديث قطاع البرتول املصري كما يسعدنا إستقبال املزيد من املقاالت والرؤى اخلاصة بقطاع البرتول‪.‬‬

‫الرئيس الشرفى للمجلة املهندس‪ /‬أسامة كمال وزير البرتول األسبق‬ ‫املهندس‬

‫الـدكتـــور‬

‫طــاهر عبد الرحـيم‬

‫ماهر مصباح‬

‫رئيس شركة برتوسيلة‬

‫رئيس جامعة قناة السويس‬

‫اجليولوجى‬

‫الـدكتـــور‬

‫مصطفى البحر‬

‫أحمد الصباغ‬

‫الرئيس السابق لشركة عجبية للبرتول‬

‫رئيس معهد بحوث البرتول‬

‫املهندس‬

‫الـدكتـــور‬

‫حممد بيضون‬

‫عطية حممد عطية‬

‫رئيس جملس إدارة السويس للزيت (سوكو)‬

‫رئيس قسم البرتول اجلامعة الربيطانية‬

‫املهندس‬

‫الـدكتـــور‬

‫حممد حامد اجلوهري‬

‫عادل سامل‬

‫الرئيس السابق للشركة العاملية لتصنيع مهمات احلفر‬

‫أستاذ البرتول باجلامعة االمريكية‬

‫املهندس‬

‫الـدكتـــور‬

‫حممد ابراهيم‬

‫جمال القليوبى‬

‫رئيس شركة غازتك‬

‫أستاذ البرتول باجلامعة االمريكية‬

‫املهندس‬

‫الـدكتـــور‬

‫خــالد عبــود‬

‫إسماعيل عياد‬

‫مدير تطوير األعمال العاملية (‪)MCS‬‬

‫معهد بحوث البرتول‬

‫املهندس‬

‫الـدكتـــور‬

‫شريف حسب اهلل‬

‫إسماعيل حمجوب‬

‫مدير العمليات رشيد للبرتول‬

‫الرئيس االسبق لشركة عجيبة للبرتول‬

‫املهندس‬

‫املهندس‬

‫هانــى حــافظ‬

‫أحمد رضوان‬

‫الرئيس السابق ملبيعات شل مصر‬

‫رئيس شركة يوكس للخدمات البرتولية‬

‫اللـــــواء‬

‫املهندس‬

‫مصطفى قدرى‬

‫حممد ندى‬

‫رئيس جملس إدارة شركة مالتى ديلنج‬

‫رئيس جملس إدارة شركة (باسكو)‬

‫املهندس‬

‫الدكتـــور‬

‫أحمـد هاشــم‬

‫عالء الدين القباري‬

‫رئيس جملس إدارة شركة بروسريف‬

‫خبري الطاقة والبيئة‬


www.mydesign.com.eg

Address: 37 Ibrahim Aboul Naga street, Abbas Al-Akkad Extension, Nasr city, Cairo, Egypt. Phone: +202 2 273 1374 - 2 670 0108 Fax: +202 2 272 6183 Email: saber@kobold.com

www.kobold.com


Petroleum Today Chairman Mohamed Bendary Vice-Chairman Mohamed Hamdy

Egypt and energy future

Executive Editor-in-Chief Magdy Bendary General Manager Hany Ibrahim Article Scientific Adviser Consultant /Ahmed Shehab

M

Scientific Secretary Ali Ibrahim

ost expectations refer that Egypt is entering a new era in the petroleum discoveries field and after a period of the biggest energy crisis hit the country since the outbreak of the twenty-fifth of January Revolution and the foreign investment sharp decline in the sector

Egypt signed up to date more than 65 new agreements with foreign

partners to search for oil and gas in the Mediterranean and Western desert and the SuezGulf, the most important results was the discovery the giant field of Duhr by Italian oil company Eni, as well as modifying the North Alexandria agreement with the English BP company. The results lead us to consider in depth to the huge gas reserves in the Mediterranean and estimated by the US Geological Survey at more than 200 trillion cubic feet lies mostly within Egyptian territorial waters From all above we must pay attention that Egypt in the way to possess a large gas wealth,it must be plannedto exploit them and use them to preserve the right of cominggenerations. Eyes are moving toward Egypt and the energy map in the Middle East changes and the acceleration of Israel and neighboring countries to excavate and search for gas in the Mediterranean.... should pay attention

And In the end, we salute you all and wish for Egypt pride and dignity.

Editing Staff Shaimaa Eid Hany Khaled Mohamed Mousa Marketing Magdy Ahmed Mohamed Moussa Mohamed Attia Financial Management Omnia Alaa Art Director Walid Fathy Distribution Mahmoud Mabrouk Art Direction Mohamed Bendary Photography Mohamed Fathy Scientific Staff Dr. Attia M. Attia Dr. Adel Salem Dr. Ahmed Z. Nouh Dr. Ismail Aiad Dr. Gamal Gouda Eng. Mahmoud A. Gobran Eng. Mohamed nada Eng. Taher Abd El Rahim Eng. Mohamed Bydoun Eng.Samir Abady Dr. Lubna Abbas Saleh Special thanks to all the Society of Petroleum Engineers (SPE) Mr. Hany Hafez Eng. Mohamed Abdel Sattar Publisher The Egyptian Company For Marketing 29th Abd El - Aziz Gawesh st. Lebaono Sq. , Mohandeseen Giza - Egypt Tel: +202 42191195 01006596350 - 01116251134 01000533201 E-mail: petroleum.mag@gmail.com E-mail:info@ petroleum-today.com www.petroleum-today.com Copyright Reserved Design and Print by:

Petroleum Today

Tel. : +202 33050884 info@mydesign.com.eg www.mydesign.com.eg


Egypt News Petroleum sign 5 agreements with ENI, BP, Inge and Apache Engineer Tariq Al-Mullah, Minister of Petroleum and Mineral Resources Signed 5 new petroleum agreements to excavate for oil and gas in the western desert regions, the Gulf of Suez, the Mediterranean and the Nile Delta with international companies of American, Italian and English and French nationalities, The investments of a minimum about 2.2 billion dollars and the drilling of 10 wells and the granting of the signing of 544 million $. According to the Ministry of Petroleumdeclaration, which a (Petroleum Today) magazine received a copy of it,Engineer MohamedEl Masry the executive chairman of the Petroleum and Mr. Adriano Monginis Regional Director for Italy›s Eni and Mr. Jones Venburd General Manager of French Angie (Gaz de France and Mr. Nader Zaki president of my company Pei Egypt and Mr. Tom Maher, chirman of the American Apache Corporation) sign the agreements. The minister refer that the first four agreements signed between the Italian Eni and its partners with the Egyptian

General Petroleum Corporation investments more than two billion dollars to activate the agreements signed during the economic conference that held in Sharm El- Sheikh in March , the first agreement for oil and gas excavation in the Gulf of Suez and the Nile Delta

Oil production in Egypt stabilizes at 700 000 barrels per day Minister of Petroleum Engineer Tariq Al-Mullah, said that exploration in the Western Desert of Egypt made it possible to maintain steady oil production from new discoveries compensated the declining for production from old fields. He said between 54 to 55 percent of our crude oil comes from the Western desert and thus it›s the future of the oil in Egypt. This came through the participation of the Minister to an investment conference in London He said that the level of oil production in Egypt will remain stable at about 700 thousand barrels per day in the next two years, but may increase after that thanks to new wells. The increase in production may be in 20172018- when the gas comes from the Duhr and the fields of the Nile Delta. Capacitors will come by that time it (oil production) may be somewhat greater.

14 Petroleum Today

- December 2015


BPBP agrees agrees with with Egypt Egypt to to speed speed of of thethe development development of Atulfield of Atulfield

BPBP announced announced thatthat it has it has signed signed a preliminary a preliminary agreement agreement with with Egypt Egypt to accelerate to accelerate thethe development development of Atull of Atull marine marine gasgas field, field, which which is now is now expected expected to begin to begin production production in 2018. in 2018. TheThe signing signing of the of the agreement agreement with with thethe Egyptian Egyptian Minister Minister of of Petroleum Petroleum after after discussions discussions between between BobBob Dudley, Dudley, CEO CEO of of BPBP andand Egyptian Egyptian President President Abdel Abdel Fattah Fattah al-Sisi. al-Sisi. Dudley Dudley saidsaid in ain statement: a statement: «We «We areare pleased pleased thatthat we we areare making making rapid rapid progress progress towards towards thethe development development of of Atull Atull after after lessless thanthan eight eight months months from from thethe announcement announcement of the of the discovery.» discovery.» BPBP waswas announced announced relatively relatively large large field field discovery discovery in March in March andand reserves reserves estimated estimated about about 1.51.5 trillion trillion cubic cubic feetfeet of gas of gas andand 31 31 million million barrels barrels of condensation. of condensation. It isItexpected is expected thatthat thethe fullfull development development work work of the of the field field Atull Atull consists consists of two of two stages: stages: thethe firstfirst consists consists of 2ofdevelopedwells 2 developedwells linked linked to the to the existing existing infrastructure, infrastructure, production production is expected is expected to begin to begin delivered delivered in 2018.Itis in 2018.Itis expected expected thethe success success of this of this stage stage to lead to lead to pumping to pumping additional additional investments investments for for drilling drilling other other wells wells andand increase increase production. production. TheTheParanoiac ParanoiacPetroleum Petroleumcompany companywillwill(one (oneof ofthethe participating participating companies companies thethe Bp Bp andand thethe petroleum petroleum sector) sector) implement implement andand operateAtull operateAtull development development operations. operations.

Egypt Egypt fines fines European European oil oil tanker tanker 58 58 million million pounds pounds forfor having having a broken a broken oil oil pipeline pipeline in Suez in Suez Suez Suez Court Court of First of First Instance, Instance, headed headed by by Judge Judge Mohamed Mohamed YahyaRafat YahyaRafat Fined, Fined, foreign foreign oil oil tanker tanker «Nassau «Nassau Energy», Energy», andand owned owned by by partners partners from from European European countries, countries, andand flying flying thethe flagflag of Liberia of Liberia thethe amount amount of 58.00085 of 58.00085 million million thousand thousand pounds, pounds, forfor thethe benefit benefit of of thethe fishing fishing sector sector in in thethe RedRed Sea, Sea, andand thatthat after after having having a broken a broken oil oil pipeline pipeline in Suez in Suez in thesea in thesea water water at Zeiteyatport at Zeiteyatport andand polluting polluting thethe seasea water, water, equivalent equivalent to 4tothousand 4 thousand barrels barrels of crude of crude oil.oil. TheThe oil oil tanker tanker during during its its pumping pumping petroleum petroleum oil oil in in a a pipeline pipeline to to thethe RedRed Sea, Sea, broke broke thethe lineline andand caused caused thethe leak leak 4 thousand 4 thousand barrels barrels of of crude crude oil oil intointo thethe seasea water, water, contamination contamination of vast of vast tracts tracts of the of the RedRed SeaSea andand thethe Gulf Gulf of of Suez Suez water, water, andand thethe destruction destruction of the of the naval naval environment environment andand thethe excuse excuse andand fishfish in polluted in polluted areas. areas. TheThe Court Court notified notified thethe security security authorities authorities in Port in Port Tawfiq Tawfiq Port Port Suez Suez with with thethe contents contents of of thethe decision decision thatthat is to is to conserve conserve thethe oil oil tanker tanker «Nassauenergy» «Nassauenergy» in in thethe draft draft of of thethe Suezport Suezport of, of, after after encounter encounter exist exist twotwo days days before before thethe decision decision in the in the draft draft of of thethe verdict verdict agoago after after leaving leaving Egypt Egypt after after thethe disaster disaster thatthat caused, caused, thethe pretext pretext is to is to reconciliation reconciliation with with thethe EEAA EEAA . .

Egypt Egypt provides provides a full a full need need of of factories factories of of natural natural gasper gasper day day Chairman Chairman of the of the Egyptian Egyptian Holding Holding Company Company forfor Natural Natural GasGas (EGAS) (EGAS) saidsaid thatthat Egypt Egypt now now provide provide thethe fullfull needs needs of the of the industrial industrial sector sector of natural of natural gasgas after after runrun thethe second second floating floating station station andand linked linked to the to the national national gasgas net.net. A large A large number number of of fertilizers, fertilizers, ironiron andand steel steel andand cement cement companies companies in Egypt in Egypt suffers suffers from from a lack a lack of natural of natural gasgas regular regular reaching reaching butbut alsoalso fully fully snapped snapped in some in some cases cases duedue to the to the Ministry Ministry of Petroleum of Petroleum conversion conversion most most local local andimported andimported gasgas quantities quantities intointo electric electric power power stations. stations. Khalid Khalid Abdul-Badiexplained, Abdul-Badiexplained, according according to Reuters to Reuters news news agency, agency, «he«he saidsaid thethe industrial industrial sector sector in in Egypt Egypt does does notnot have have anyany trouble trouble getting getting its its needs needs of of gas.gas. Indeed Indeed wewe have have provided provided gasgas to all to all industrial industrial sector sector factories factories with with starting starting thethe second second Alngez Alngez station.» station.» Egypt Egypt hired hired twotwo ships ships forfor Regas Regas thisthis year year to provide to provide thethe needs needs of gas of gas forelectricity forelectricity sector sector andand factories. factories. A number A number of steel of steel company›s company›s officials officials in telephone in telephone contact contact with with Reuters Reuters to provide to provide thethe required required gasgas forfor their their factories factories from from thethe beginning beginning of the of the firstfirst of November. of November. President President Abdel Abdel Fattah Fattah Al-Sisi Al-Sisi saidsaid earlier earlier thisthis month month thatthat thethe factories factories in Egypt in Egypt willwill notnot faceface anyany problems problems in getting in getting its its gasgas by by thethe endend of November. of November.

Petroleum Today -

December 2015

15


Arab News Saudi Arabia will not reduce oil production Financial Times newspaper quoted Khaled Al-FalehChairmanof Saudi Aramco saying that the state-owned company does not intend to reduce oil production and it is expected to return balance to the market in 2016. Faleh said in an interview with the Financial Times, «The only thing can do now is to let the market do the mission. No discussions here say that should reduce production after the pain that we›ve seen. «The chairman of Saudi Aramco described the price of 100$ per barrel of

oil as a free insurance policy provided by Saudi Arabia and allowed to flourish deep water oil and rocky oil producers because it» was a guarantee of an investment risk lack «as reported newspaper. Faleh said that officials in Riyadh were aware that the decline in oil prices will be painful , but the extent of the pain exceeded their expectations. He told the newspaper « exaggerated market reaction as its normally would in such downward cycles. Now everyone is rushing to the exit portal and projects

being cancelled. This is necessary, but what will happen after five to ten years from now? Investment is necessary. But it is hoped that sufficient investments meet requirements after 2017.

Emirates proceeding with its plans to increase oil production to 3.5 million barrels per day UAE Energy Minister said that his country is proceeding with its plans for investments in oil and gas, despiteof the current decline in crude prices. Minister Suhail Al Mazroui said in response to a questions from Reuters on the occasion margin of the energy sector in Abu Dhabi «investments is moving forward. We continue our investments.» He responded in affirmative when he

was being asked whether the United Arab Emirates as an OPEC member will increase its oil production capacity to 3.5 million barrels per day by 2017. FatihBirol, the International Energy Agency director expected that global investment in the oil sector decline 20 percent this year, the biggest recorded decline. Al Mazroui said that his country will invest $ 35 billion to diversify its

energy sources and reduce dependence on natural gas importance to generate electricity. «We need to reduce our dependence on natural gas and imports. We invest 35 billion$ for that purpose,» he said, adding that the goal is to reduce the UAE›s dependence on natural gas from the current 100 percent to 70 percent by 2021.

Kuwait: $ 5 billion to develop four Jurasah oil and gas fields

The Kuwaiti Al Anbaanewspaper Quoted by responsible oil sources that Kuwait Oil Company received financial offers for the project to develop four oil and gas

16 Petroleum Today

- December 2015

fields in the East and West Raudhatain and West Sabriyahand UmNekacoasts 1.5 billion dinars, that equivalent of 4.95 billion dollars, referring thatonly three companies ran financial bids out of 16 are eligible for the project company. The project aims to develop those fields production capacity to reach them with 40 thousand barrels, and the project was assigned to the north of Kuwait Directorate in Kuwait Oil Company

instead of a group of projects in the company because of the sensitivity of the project art and its technical importance in terms of equipment, has been divided into 3 main packages will be awarded the project to 3 different companies. In spite of the high financial bids received by the company to develop the fields, but the limited offers on three international companies makes the competition is so limited for the project.


International News Obama refused to announce the Keystone XL pipeline project US President Barack Obama announced that his administration rejected the Keystone XL petroleum pipeline from Canada to Nebraska, after more than seven years to propose the controversial project for the first time. «The Foreign Ministry has decided that pipeline Keystone XL line would not serve the national interests of the United States. I agree with that decision.»Obama said It was planned for Keystone XL to link two pipelines networks in Canada and the United States to bring more than 800 thousand barrels per day of heavy crude oil and diluted bitumen from oil sand in Alberta to refineries in Illinois and at the end to the Gulf of Mexico.

OPEC is ready for new investments to meet the world›s energy needs Abdullah al-Badri Secretary General of the Organization of Petroleum Exporting said that, despiteof the current blurry vision the organization members are ready to do the necessary investments to meet the world›s energy needs in the future. Badri said in decelerations published by the International Energy Forum site that

cancellation wave and postponed projects in the sector is «clear evidence that price changesaffected on investments, it may sow the seeds of instability in the future.» Secretary-General of the organization said that , he expecting Asian demand risefor oil about 46 million barrels per day by the year 2040, about 16 million barrels per day more than 2015.

Israel speeds up the process of gas excavation in the Mediterranean The Israeli Energy Minister Yuval Steinitz said that he expected to accelerate natural gas excavationin naval areas during the next few months, with investments from some of the largest oil and gas companies in the world. Steinitz said he met with officials from Enirecently and 20 to 30 other energy companies such as Shell and Hess, ExxonMobil and A.O.G to persuade them to invest in Israel fields off its coast on the Mediterranean Sea. According to a domain agreement was approved by legislator in August will allow the group led by the American Noble Energy and Israeli Delek to retain control the undevelopedfield of Lothian yet Delek will have to sell its portion in the Tamar field. Nobel will reduce its portionin the field, from 36 percent to 25 percent. The two companies also will sell their portions at two small locations Tanin Carisch

Petroleum Today -

December 2015

17




Corporation News Petrojet wins four projects in Saudi Arabia, Kuwait, Jordan and Oman: The minister of petroleum Engineer Tariq Al-Mulla and hiscompanion listen to an explanation from Engineer, MuhammedShemithe chairman of Petrojet company about the projects that implemented by the company in UAE , which included the implementation of a set of 150 km length Habshan pipeline and Yas / Mina Zayed crude line pipe project 30 km length, This explanation came when the Minister of Petroleum opening the suites of the two companies Petrojet and Enppi in Abu Dhabi International Conference and Petroleum Exhibition ( ADIPEC 2015 ) . Shimi , added that the company won the implementation of three projects in Saudi Arabia, Jordan and Oman recently as well as winning a project to construct a storage depots in Kuwait . As he discussed Petrojet projects in Egypt , which included participation in developing the projects of Suez Canalcorridor , in addition to the currently implemented digging two tunnels for cars and a tunnel for Railway in Ismailia area, pointing to its establishment of a factory for the production of ready-mixed concrete to cover the project tunnels .

Badr Al-Din production of oil and gas rises to the highest rates in 15 years Engineer EmadHamdi ,chairman of Badr Al-Din declared that the current production rates are the highest in 15 years , As the natural gas production raised about 514 million cubic feet gas per day, compared to the B460 million feet provided during the last fiscal year from prerogative areas of the Dutch Shell. He added that crude oil production rose to 51 thousand barrels per day compared

with 43 thousand during the last fiscal year. He referred that BadrAl-Din intends to keep the rates of oil production and gas by excavate developmental wells to compensate the natural decline rates of the fields productivity. The Dutch Shell assigned about 415million US dollar investment during the current fiscal year in its prerogative

areas in Egypt , to implement the fields developmental processes and research and exploration to increase oil and natural gas production rates . BadrAl-Din Petroleum Company seeks to increase the rates of production of natural gas and crude oil, to compensate the naturedecline of the old tanks ,by using new technology such as water injection to boost pressure of consumed tanks.

At a rate of 45 million cubic feet of gas ... Petrobel put on a wellproduction north Balteem 3 The Bala›eim Oil Company Petrobelsets operations to complete the well north Balteem -3 atNile Delta naval region and test it to place on production in the first of November atproduction rates of 45 million cubic feet of gas per day, and currently start work to re-complete a second well North Balteem -6 and put it on production within two months at a production rate up to 15 million cubic feet of gas per day. According to the Ministry of Petroleum statement, Eng. Atef Hassan, chairman of the company referred that the Nidoco well drilling has been completed at northwest -2 area of the Nile Delta and access to deeper layers and it has been put the well on production through the available facilities atAbumadyarea last August atproduction rates more than 88 million feet cubic gas per day. He also explained that a plan has been put to drill numbers of wells to evaluate and develop the prerogative area of Nidoco, where the well Nidocowas drilled northwest -3, and the most works of the excavation and the discovery has been completed of an extension of the layer-bearing gas greater thickness of the detected in the well Nidoconorthwest -2 about 7 meters, which is a positive indicator to increasing the quantities of gas in the underground layers.

20 Petroleum Today

- December 2015


BG starts a production of 150 million cubic feet of gas of the ninth stage (a) the first Plus 2016 Tariq Al-Mullah,the Egyptian Minister of Petroleum said that BG company will begin production of the ninth stage (A-plus) in the first quarter of 2016 with investments of $ 350 million to produce 150 million cubic feet of gas per day in the deep waters off the western delta, it came during a Ministerdeclrations in front of the Reuters Investment Summit He added: the ninth stage (b) production will begin in the third quarter of 2017 with investments of $ 1.3 billion to produce 400 million cubic feet per day in the deep waters off the western Delta . Egypt has recently agreed with BG to raise the price of natural gas to 5.88$ per million BTUs of gas produced from deep water West Delta compared with the previous price of 3.95$.

ACO Making Your Life Safer by Supplying Dräger Engineered Solutions Text: “The Arab Commercial Office is one of the oldest safety equipment suppliers in Egypt. Founded in 1974 by Aly Hassan, continuing the family tradition by supplying safety equipment to the Egyptian market. ACO doesn›t stop at just providing the equipment, our dedicated team of sales and service engineers are always available for each and every customer at all times, providing the best after sales service available in our market. Within the industrial market, from oil and gas to pharmaceutical and everyday FMCGs, each customer has different requirements that best suit their specific needs. This is where we come in, by transferring the customers’ needs into a live tangible product. This happens when in some cases the customer requires a product that accomplishes a very specific task. Customizations are made according to the customers’ required functionality, space available, number of people using the product and many more factors.”

Proserv. Group PLC Expands Business to Downstream Proserv Group PLC. is one of the fast growing and fully integrated energy company with a leading portfolio and wide network of operations in the MENA region, headquarters located in Cairo, Egypt and offices across the MENA region in Malta and Morocco. Upstream is core business supporting engineering and consulting services to oil and gas exploration in the MENA region. Proserv. Group PLC steadily broadened its activity establishing companies and subsidiaries and creating an integrated oil and gas industry. In line with Proserv Group PLC strategic plans to become integrated Energy Company across the MENA Region, Proserv. Group succeeded to sign contract with Chevron Egypt to become the primary sales and distribution platform for Chevron brand “CALTEX” across the country with total expected revenues 120 Million EGP per annum. Chevron Corp. is multinational Energy company, with around 64.000 employees in more than 180 countries. Headquartered in San Ramon, California; in 2014 the company was ranked No. 3 among the Fortune 500, with global revenues of over USD 257 billion. It had a global refining capacity of 1.9 million barrels of oil per day. Chevron first began operations in Egypt in 1937 and became one of the major lubricant supplier in the market today, whose products are trusted by millions of customers.

New Agency Announcenment

Continuing to our business cooperation, and in order to satisfy our customers in the Egyptian Market, we have obtained the Agency of the following Companies:

SIHI GmbH: ManufacturingLiquid Ring/ dry Vacuum Pumps, Liquid ring vacuum compressors, Engineered Systems, Multistage Horizontal pumps, Side Channel Horizontal pumps. NETZSCH do Brasil: Manufacturingmulti Screw Pumps with two, three and four screws. As a strong business attacking for the

Egyptian Market, NETZSCH do Brazil could be approved in PGESCO vendor list and has secured a contract with Orascom for supplying 18x HFO twin Screw pumps for the New Assuit Power Plant Project. BORSIG COMPRESSION ZM: Manufacturing, supply and erecting reciprocating and integrally geared centrifugal gas compressors and complete packages.

Petroleum Today -

December 2015

21



www.mydesign.com.eg

We are J.M.S for Trade and Engineering and we are authorized Distributors for the following companies

Hi- Force ( UK ): Ó Hydraulic Cylinders and Pumps. Ó Manual and Hydraulic Torque Wrenches. Ó Hydro test Pumps. Ó Bolt tensioner. Ó Hydraulic tools as ( Flange Spreader – Nut splitter – Hydraulic Pullers – Cable crimping tools). On-site Bolting Services : Ó Manual Bolt Torquing. Ó Hydraulic Bolt Torquing. Ó Hydraulic Bolt Tensioning.

Mag – Tron ( U.K ) Ó Magnetic Drills and Cutters .

Protem ( France ) Ó Cold cutting and Beveling Machines. Ó Beveling Machines only. Ó Flange Facing Machines. On-site Cold Cutting and Beveling for All Pipes.

Wicksteed ( U.K ) Ó Tube Expanders For Condensers And Heat Exchangers Ó Torque Control Drive Equipment Ó Tube Pulling / Removal Equipment

J.M.S for Trade & Engineering 4 El Awhady St., From El Makrizy St., Above Qatar National Bank, Manshiet El Bakry - Heliopolis, Cairo 11341 - Egypt

Weld – Tech Company - Denmark Ó Clamps for pipes and flanges Ó Purging equipments

Fax : 002 02 24520288 - 002 02 24511934 Mobile : 002 012 7444 5806


New Products Jackup Drilling Rig Zentech’s new R-550D jackup drilling rig design is a highcapacity, extended-reach cantilever rig, rated for 3,500 kips combined drilling load with extended reach to 80 ft aft of the transom. The R-550D features an operational variable deck load of 11,000 kips (Fig. 1). The Zentech designed and patented Zenlock System provides enhanced rig safety and ease of operation. This unique leg-to-hull fixation system is already under construction for R-550D rigs being built for Alliance Offshore Drilling. The R-550D features 4,220-bbl active/reserve mud pits configured for dual-fluid operations, along with three mud pumps, each 2,220 hp or equivalent. Living quarters can accommodate more than 150. Utilities and drains are configured for zero discharge. The R-550 is designed for closed-loop or air cooling of all equipment. The rig features a high-speed preload system for minimized mobilization time, as well Fig. 1— Zentech’s R-550D jackup drilling rig. as enhanced jacking capacity with 54 pinions allowing jacking with full preload (70,000 kips) in addition to normal jacking of 54,000 kips. The R-550D has been designed to virtually eliminate rack phase differential (RPD) problems with an allowable spud-can deflection of more than 14 ft and RPD values in the range of 9 to 10 in. with nominal fixity. The rig handles drilling depth of 35,000 ft (9144 m). For additional information, visit www.zentech-usa.com.

Artificial-Lift Foamers Aubin has developed a new range of “green” foamers certified for use in the North Sea and Europe. Aubin has focused on surfactant-based foaming agents suitable for a variety of brines, temperatures, and condensate levels, therefore unlocking a new gas-well de¬liquefication solution. Both operators and service companies have verified the laboratory performance of the new product range, leading to field trials in the North Sea and Europe. ¬Laboratory-testing methods involve a dynamic liquid-unloading technique by a test-rig apparatus and column tests by bubbling gas at the bottom of a cylinder, which aim either to remove a percentage of total liquids from the column or to evaluate the quality of the foam generated. The dynamic-liquid-¬unloading-test rig simulates the well in the laboratory. The foam generated is collected in a tank and then sits on a balance, obtaining the weight of the fluids unloaded from the column. Gas purge at the bottom of the cylinder by a porous sinter reveals the quality of the foam and buildup time and half-life of the foam. Test results have shown a significant de¬liquefication percentage, up to 90%, for highly loaded condensate wells. Ó For additional information, visit www.aubingroup.com.

24 Petroleum Today

- December 2015


Chemical-Injection Chemical-Injection System System Remote Remote Automation Automation Monitoring Monitoring (RAM) (RAM) products products allow allow upstream upstream andand midstream midstream operations operations to increase to increase chemicalchemicalinjection injection precision precision andand efficiency efficiency while while reducing reducing chemical chemical andand overhead overhead costs. costs. RAM RAM uses uses patent-pending, patent-pending, virtualvirtualflowmetering flowmetering andand stroke-¬counting stroke-¬counting technology technology to achieve to achieve precise precise dosage dosage delivery. delivery. RAM’s RAM’s IPC2000 IPC2000 cellular cellular pump pump controller controller uses uses thisthis technology technology to sense to sense each each compression compression stroke stroke delivered delivered by by thethe pump pump without without additional additional sensors, sensors, cables, cables, or components or components (Fig. (Fig. 2). 2). It offers It offers major major savings savings on on equipment equipment costs costs andand includes includes PROFLO PROFLO proportional proportional flowflowcontrol control technology. technology. PROFLO PROFLO allows allows thethe option option of setting of setting chemical-delivery chemical-delivery targets targets on on thethe basis basis of of conventional conventional quart-¬per-day quart-¬per-day parameters, parameters, or in or parts in parts perper million million (PPM). (PPM). TheThe PPM PPM mode mode permits permits a simple a simple input input signal signal from from a a product product flowmeter flowmeter to to automatically automatically modulate modulate chemical chemical dosage dosage on on thethe basis basis of of thethe user-set user-set PPM PPM concentration concentration level. level. AllAll RAM RAM ¬cellular¬cellularandand satellite-based satellite-based controllers controllers feature feature integrated integrated tank tank monitoring, monitoring, local local autonomous autonomous pump pump andand tank tank management, management, comprehensive comprehensive battery battery 2— 2— Remote Remote Automation Automation Monitoring’s Monitoring’s IPC2000 IPC2000 cellular cellular pump pump controller. controller. management, management, temperature-controlled temperature-controlled methanol methanol injection, injection,Fig. Fig. andand security security alerts. alerts. They They alsoalso offer offer comprehensive comprehensive scheduled/polled scheduled/polled reporting reporting through through text, text, a mobile a mobile webweb page, page, or RAM’s or RAM’s FLEET FLEET web-based web-based human/machine human/machine interface. interface. Ó For Ó For additional additional information, information, visitvisit www.remoteautomationmonitoring.com.. www.remoteautomationmonitoring.com..

Magnetic Magnetic Thickness Thickness Detector Detector GOWell’s GOWell’s latest-generation latest-generation magnetic-thicknessmagnetic-thicknessdetector detector(MTD) (MTD)tooltoolis iscapable capableof ofevaluating evaluating quantitative quantitative thickness thickness measurements measurements of three of three concentric concentric pipes pipes (Fig. (Fig. 3). 3). TheThe instrument instrument combines combines a high-power a high-power transmitter, transmitter, improved improved ¬signal/noise ¬signal/noise electronics, electronics, andand fully fully configurable configurable acquisition. acquisition. This This flexible flexible approach approach allows allows a wide a wide range range of of evaluations evaluations under under different different conditions conditions andand conveyance conveyance systems, systems, including including logging logging in large in large pipes pipes (up(up to 18⅝ to 18⅝ in.),in.), fastfast logging logging of of single single pipes, pipes, chromechromeandand alloy-pipe alloy-pipe evaluation, evaluation, thick thick casings, casings, andand memory-optimized memory-optimized logging. logging. Internally, Internally, thethe tooltool acquires acquires up up to to 300300 channels channels of of pulsed-eddy-current pulsed-eddy-current transient transient decay decay thatthat cancan be be transmitted transmitted in in realreal time time to to surface surface or or stored stored downhole. downhole. Real-time Real-time logging logging is is possible possible either either in combination in combination below below anyany of GOWell’s of GOWell’s existing existing Multi-Finger Multi-Finger Caliper Caliper (MFC) (MFC) tools tools or or when when combined combined with with PegasusStar, PegasusStar, -GOWell’s -GOWell’s high-speed high-speed telemetry telemetry system. system. Memory Memory acquisition acquisition is supported is supported by by GOWell’s GOWell’s memory memory logging logging system. system. When When runrun with with their their Pegasus¬Star Pegasus¬Star platform, platform, thethe MTD MTD is fully is fully combinable combinable Fig. Fig. 3— 3— GOWell’s GOWell’s MTD MTD tool tool can evaluate can evaluate quantitative quantitative thickness thickness with with thethe MFC MFC tooltool andand their their Digital-Radial-Bond Digital-Radial-Bond Tool, Tool, measurements measurements of three of three concentric concentric pipes. pipes. allowing allowing a comprehensive a comprehensive evaluation evaluation of well of well integrity, integrity, providing providing accurate accurate thickness thickness information information for for multiple multiple pipe pipe strings strings as well as well as the as the cement-bond cement-bond quality. quality. Ó For Ó For additional additional information, information, visitvisit www.gowellpetro.com. www.gowellpetro.com.

Petroleum Today -

December 2015

25


Centralizer Proper casing centralization is critical to achieving a high-quality cement job and long-term well integrity. The Weatherford VariForm centralizer withstands the most-demanding run-in-hole conditions to centralize casing precisely in horizontal, deviated, standard-gauge, underreamed, and close-¬tolerance sections (Fig. 4). It is a one-piece, slip-on centralizer with a single, metallurgically invisible weld with no hinges or mechanical connections. The shape can be easily adjusted to optimize performance for any application. During run-in, the bows collapse to enable passage through tight wellbore restrictions. Upon landing, the bows restore the full outside diameter (OD) to provide reliable standoff. The centralizer is available in Fig. 4— Each VariForm centralizer from Weatherford undergoes three distinct versions: standard, UR, and sub. The standard stringent in-house manufacturing and testing so that it meets or exceeds all American Petroleum Institute 10 D standards. centralizer has an OD that is equal to the expected hole size, to minimize starting and running forces. The UR centralizer runs through tight annular restrictions, especially those in underreamed sections. The sub runs in close-¬tolerance casing restrictions as narrow as 0.125 in., yet it restores to full OD to centralize underreamed openhole sections of at least 4 in. Each type of centralizer is available in a wide selection of standard sizes and designs or can be fully customized. Ó For additional information, visit www.weatherford.com.

Geospatial Navigation and Analysis Service

Fig. 5— The VisiTrak service from Baker Hughes updates reservoir architecture while navigating in the sweet spot.

26 Petroleum Today

- December 2015

In complex geological formations, optimizing wellbore placement presents a difficult challenge. The Baker Hughes VisiTrak geospatial navigation and analysis service increases well¬construction efficiency by reducing seismic uncertainty and avoiding costly pilot holes and unplanned geological sidetracks (Fig. 5). The advanced logging-while-drilling service makes it possible to define reservoir architecture by mapping multiple bed boundaries in real time, without the need for pilot holes that are typically drilled to evaluate the formation before drilling the horizontal portion of a well. The service combines extradeep azimuthal readings with full interpretation of complex geological scenarios, to give operators a better understanding of the reservoir architecture. The service, which is built on more than a decade of reservoir-navigation experience using both omnidirectional and azimuthal technologies, consists of four key components: a set of sophisticated downhole sensors, reservoir-¬navigation-service experts, multicomponent real-time inversion-modeling software, and advanced 3D visualization software. The VisiTrak bottomhole assemble uses short transmitter/receiver spacing to position the modules closer to the bit, which enables earlier detection of remote reservoir boundaries. The modules operate at two frequencies—20 and 50 kHz. For each frequency, the VisiTrak service provides long space measurements of phase difference and attenuation resistivities, along with directional signal-strength measurements that provide a 360° view of the borehole. For additional information, visit www.bakerhughes.com.


Pipeline-Monitoring System Paraffin-wax deposition and calcium-¬carbonate scaling cause significant costs for oil companies. Significant savings can be achieved when the pipeline deposition and scaling are monitored continuously in order to control dosage of antiscaling and antideposition chemicals widely used in the oil and gas industry. Deposition Watch, developed by tomographic instrument provider Rocsole, is a new instrument that produces real-time images of what is collecting on the inner wall of the sensor, for continuous control of the chemical feed (Fig. 6). The instrument provides a visual image of the interior of the pipe even when the pipe is 95%, or in some cases even 100%, blocked by deposition. Some operators do not use antiscaling and antideposition chemicals to prevent pipe buildup. These operators can use Deposition Watch to monitor deposition-growth rate for optimization of the pipe-pigging cycle. Pipe-deposition and slugflow data provided by Deposition Watch can also be used in validation of a multiphase-flow simulator. The system is based on a nonnuclear technology called electrical-capacitance tomography, an imaging technique that can be used for the determination of the permittivity distribution of a dielectric medium, within a region of interest. Fig. 6— The Deposition Watch pipeline-monitoring system by Rocsole. Ó For additional information, visit www.rocsole.com.

Degradable Polymer

Automated Reporting Software

To date, there has been only one polymer considered strong enough for use in making downhole balls and tools: polyglycolic acid (PGA). Whereas balls and tools made from PGA degrade reasonably well in environments that Fig. 7— A downhole ball made with Bubbletight’s DCP. have a sustained temperature greater than 210°F, PGA is generally not considered for use in lower-temperature formations. Bubbletight has developed its new patent-pending Degradable Composite Polymer (DCP) to overcome the issue of degrading in colder formations, and it has the added benefit of costing less than PGA. Balls, darts, and other downhole tools made from DCP will degrade in ambient-¬temperature fresh water and have the strength and mechanical toughness of a composite phenolic (Fig. 7). Additionally, because it is a thermoplastic that can be ¬injection-molded and extruded, DCP can be formed directly into net-shape components with no additional machining required.. Ó For additional information, visit www.bubbletightusa.com.

NOV has announced the commercial release of the SynOpsis automated reporting software, part of the MD Totco family of drilling applications and software. The SynOpsis software collects data from rig sensors, determines the activities being performed, and provides rig, crew, and well-¬efficiency metrics to increase understanding of drilling operations. Manual methods of capturing rig activity are subjective and summarized, limiting the ability to identify invisible lost time or possible areas for improvement. The SynOpsis software analyzes 1-second sensor data at the rigsite to determine the rig state in real time. This provides metrics and visibility on even the shortest events, enabling operational optimization. The SynOpsis software offers a variety of intuitive, comprehensive reports that highlight key performance indicators such as rotary-/ slide-drilling rate of penetration, tripping speed, and slip-to-slip and weight-to-weight connections to evaluate rig and well performance. With detailed and summary information, users can view key metrics by day, well, or crew. With a diverse selection of reports, whether customers want to see a condensed daily summary of all rigs or wells, a comprehensive view of rig performance, a post-well report, or a benchmark of multiple rigs and wells drilled in a particular area, SynOpsis provides a view to meet the need. Ó For additional information, visit www.nov.com

Petroleum Today -

December 2015

27


Vice President of CATEC:

We have lots of Competitive Advantages and plans to expand in the Middle East and North Africa! CATEC (Consulting And Technical Engineering Company) is one of the leading companies in the Middle East and Africa in the field of industrial boilers, special lubricants, pumps, textile machinery, and solar systems. The company was established in 1980 and entered the oil services sector since 15+ years ago. The Company has hundreds of customers in more than 40 countries, and it is the official exclusive agent for several German reputable industrial manufactures. It also has many competitive advantages that made it a pioneer in the field of leasing and operating boilers to Oil Services Companies as well as industrial factories. In addition, the company is keen on the permanent training of its workers, whether in Egypt or Germany, to raise the level of technical performance for them in order to offer the best service to customers. Petroleum Today Magazine had the honor to meet Engineer Shamel Elnomany, Vice President of CATEC, to identify the industrial areas of work and operations, as well as how the Company serves the Oil & Gas sector, and the company›s future vision for expansion in the MENA region.

Shamel Elnomany is an Egyptian Engineer and has the Canadian nationality. He lived in Canada for 14 years and graduated from McMaster University in 2006, with dual degree from Mechanical Engineering and Business Management. Directly after graduation he worked in Toronto, Canada for two years in Shaw Group, a reputable American EPC company with 7+ billion dollars in projects worldwide. He worked within an engineering team on a petrochemical project for SABIC. He moved to Egypt in 2008, and now he has been working in CATEC for the past eight years, becoming its VP in January 2011.

28 Petroleum Today

- December 2015

When was CATEC established and its work fields? “CATEC was established in 1980 as an Engineering company, and obtained the exclusive agency of top European industrial manufacturers (mainly German). CATEC started working in textile machines and after 3 years the company entered the field of boilers, pumps and special lubricants for all types of industrial applications. The company is an exclusive agent of “BOSCH Industrial” German company (formerly known as LOOS), and also provides boiler services throughout the Middle East & Africa. CATEC also is an exclusive agent of “LUTZ” German company for drum & container pumps, in addition to “Klüber Lubrication” German company for lubricants. I would like also to add that Klüber possesses more than 2000 types of special lubricants used in delicate areas in all kinds of complex industrial applications, including the oil & gas sector.


When did CATEC began to provide its services to Oil Sector Companies? “As I said earlier, the company is the agent of “BOSCH Industrial” in the field of boilers. In 2001 the company decided to buy boilers and redesign it with accessories inside 20ft containers for easy and quick mobilization. We rent our mobile boiler systems to oil services companies with our operation, consisting of engineers and technicians to operate the boilers on offshore & onshore rigs. We have started working first in Egypt and expanded after that throughout the MENA region. Now, we work in many Arab countries and our most important customers are SCHLUMBERGER, HALLIBURTON, EXPRO and ALMANSOORI. Let me note that our containerized boilers are used in the Well Testing phase, as well as cleaning processes.

cannot and an Engineer must be sent to fix problem. The second advantage is that the company is working in the field of boilers for more than 35 years now, and our BOSCH brand boilers are the best and most reliable in the world. Third advantage is that CATEC can provide a rental boiler for its clients upon request during two or three days only, and our prices are very competitive compared to our European competitors”.

We would like to highlight the number of company branches and the number of workers in it? “The company has four offices in Egypt as well as a workshop and a warehouse in the industrial area of Borg Alarab in Alexandria. We also have a temporary office in Canada to serve our projects in North America. We have hundreds of customers in more than 40 countries around the world, and the company has more than 60 staff members between Engineers, Technicians, and Administrators. Our technical staff have the required Certificates, and our boilers have TÜV German certification”.

How does CATEC give concern to its staff in terms of training and upgrading their technical and professional levels? “CATEC puts training and raising the technical level of engineers and technicians as first priority to always exceed our customers’ expectations. The company gives training courses once a week in order to teach all the new technology of boilers, to keep up with technological progress. We also send several Engineers every year to BOSCH in Germany for intensive training on boilers and gain new knowledge. In addition our Engineers are faced with new boiler problems at factory sites, which also represents a kind of training. Also every three or four years we organize seminars and we invite managers and engineers of our clients’ companies for training on boilers and identify all what is new in this field. As a result of this training system, CATEC has countless maintenance contracts of various brands of boilers (not only BOSCH) throughout Africa, Middle East and South Asia.

What is the competitive advantage that CATEC has? “The company has several competitive advantages. For example, our operational staff has the highest technical level of qualified engineers and technicians to work on boilers, so that if any malfunction occurs in a boiler during operation they are capable to fix the problem on site, while our competitors’ operators

What is CATEC Company’s future vision for enlargements and offer more services for companies? “We have visions and objectives aspirations of expansion in the coming years throughout the MENA region and gain more customers. We have also opened our Renewable Energy division in 2013, and already installed Solar systems in Egypt.

Petroleum Today -

December 2015

29




Optimizing drilling operation by using Geosteering Technology By

I

Dr. Ahmed Nooh Faculty of Science and Engineering, The American University in Cairo, Egypt. E-mail: ahmednoah@aucegypt.edu ntroduction to geosteering

In geologically simple reservoirs, conventional geosteering techniques use simple logging-whiledrilling (LWD) sensors to help wellsite geologists place wells in the optimal productive zones. As geological complexity increases, more sophisticated techniques and tools are required to assist a team effort in placing the well. These tools and techniques require the integration of structure maps, LWD measurements and interpretation, and wellbore survey information to determine the location of the wellbore within the reservoir and the structure of the reservoir. This analysis then leads to the decision process about where to steer the well to meet the required objectives. I will also talk about the survey concept, definition, measurements, and the survey tools even the tools used in the past, and then I will talk about the MWD telemetry systems, and the data transmission format, and the considerations that could be done while using MWD, then I will talk about LWD tools and sensors and what do they measure, those chapters will make the way of explaining the following chapter that talks about the use of an advanced geosteering technology understandable. Then I will talk about the real case studies

32 Petroleum Today

- December 2015

that proof the importance of using geosteering with all available LWD and MWD sensors in thin horizontal reservoirs. Geosteering is the science, or art, of maintaining a near horizontal well bore within a pre-defined and often thin geological layer. The geosteerer must micro-adjust the well trajectory from the original plan, such that it is maintained within the pre-defined target for the greatest horizontal length possible. At the same time, the geosteerer must fulfill the client’s specific trajectory requirements, which may have dogleg or inclination limitations or hard ceilings/floors defined by fluid contacts. Geosteering can be divided into three sections: 1) planning stages, 2) the build-up and landing section, 3) the horizontal section. All are of equal importance for the success of a well.

Planning Field planning - HOW TO GEOSTEER? The objective here is how to identify the different layers leading up to the landing point, such that the correct landing TVD within the target can be predicted sufficiently in advance to allow for plan adjustments. Secondly the layers within, above and below the defined target must be able to be differentiated from one another so that

the correct stratigraphic position can be established and the correct steering decision made. In some areas differentiation of the various layers is simple, in other areas rocks may be cyclic or the rocks above and below the target may appear identical. The objective here is to find out how to differentiate the layers, as best as possible, and recognize them whilst geosteering. Differentiation of the various layers might be achieved in a number of ways: 1. Selecting the correct LWD suite. Maybe the layers are straightforward enough to use solely Gamma Ray, thus saving money. Maybe a full suite of Gamma Ray, Density, Porosity and Resistivity logs are required to differentiate the layers. 2. It is often the case, particularly when drilling horizontally, that the log response may look the same in layers above and below the target. The lithology may be the next line of attack. Subtle lithological variations may give clues as to the stratigraphic position. 3. Sometimes lithologies can appear identical, but micropalaeontological (calcareous micropalaeontolgy, nannopalaeontology and/or palynology) may differentiate rocks. Horizontal drilling is usually on


a sub-evolutionary a sub-evolutionarylevel levelandandthus thus relies relies on on variations variations in species in species or their or their abundances/ratios, abundances/ratios, which which areare in-turn in-turn palaeoenvironmentally palaeoenvironmentally related. related. This This is usually is usually referred referred to as to as biosteering. biosteering. 4. Sometimes, 4. Sometimes, youyou have have to to conclude conclude thatthat thethe rocks rocks above above andand below below were were deposited deposited in in thethe same same environment environment andand are,are, in in fact, fact, identical identical in in every every way way – but – but notnot all all is lost. is lost. Very Very simply, simply, oneone is up is up andand oneone is down, is down, on on thisthis basis basis image image logs logs or or directional directional LWD LWD tools tools(up/down), (up/down),putputinto intocontext context with with trajectory trajectory data data will will enable enable youyou to steer. to steer. Every Everydrilling drillinglocation locationis isunique unique andandthus thusthethetools/techniques, tools/techniques,or or combinations combinations of of tools/techniques tools/techniques must must be be tailored tailored to to thethe particular particular field field or or sub-field. sub-field. Sometimes Sometimes there there is is also also a a budgetary budgetary consideration, consideration, although although often often staying staying within within thethe payzone payzone forfor a a greater greater horizontal horizontal length length willwill offset offset thethe cost cost of of anyany required required tooltool or or technique. technique. Often Often thethe cheapest cheapest andand most most effective effective tooltool in geosteering in geosteering is to is have to have thethe correct correct personnel personnelwhose whoseattention attentionto todetail detail enables enables thethe correct correct steering steering decision decision to to be be made made thethe majority majority of of thethe time. time.

WELL WELL PLANNING PLANNING Assuming Assuming thethe field field is up is up andand running running andand thethe geosteering geosteering techniques, techniques, have have been beenestablished, established,thethewell wellplanning planning stages stagesareareessential essentialforforindividual individual wells. wells. Although Although thethe operations operations geology geologyplanning planningside sidewill willhave have (hopefully) (hopefully) been been done done months months ahead, ahead, thethe wellsite wellsite geologist’s geologist’s planning planning andand data datagathering gatheringwill willbe bedone doneduring during thethe rigrig move move (along (along with with thethe write-up write-up andand assessment assessment of of thethe previous previous well). well). Some Some clients clients will will save save on on cost cost by by only only having having thethe geosteerers geosteerers outout at at thethe lastlast minute. minute. This This is is often often a compromise a compromise to to save save money, money, butbut cancan work work if if thethe geosteer geosteer is experienced is experienced in the in the field field andand thethe operations operations geologist geologist hashas prepared prepared thethe necessary necessary offset offset data data andand ensured ensured thethe plan plan is good. is good.

This This is is a list a list of of tasks tasks carried carried outout by by thethe geosteerer geosteerer as as he he plans plans thethe well. well. It It is is basically basically thethe same same as as anyany research research project: project: 1) 1) Gather Gather data, data, 2) 2) Research Research thethe data, data, 3) 3) Execute Execute thethe plan plan – in – in thisthis case case successfully successfully drill drill thethe well! well! 1. Gather 1. Gatherdata. data.This Thisincludes includes(but (but might might notnot be be limited limited to):to): a. The a. Thewell wellprognosis/programme. prognosis/programme. (Including (Including seismic, seismic, structural structural andand porosity porosity models). models). b. The b. The most most recent recent directional directional survey survey plan plan(this (thisoften oftenchanges changeslastlast minute). minute). c. Available c. Availabledata datafrom fromrelevant relevant stratigraphic stratigraphic levels levels forforALL ALL closely closelyoffset offsetwells. wells.Principally Principally oneone is after is after a minimum a minimum of of a TVD a TVD log,log,MD MDloglogandandsurvey surveydata. data. The The final/end final/end of of well well report report andand lithological/mud lithological/mudloglogmay maybe beof of high high value value also. also. 2. Analyze 2. Analyze thethe data: data: a. Identify a. Identifyanyanyissues/problems issues/problemsin in thethe prognosis. prognosis. b. Is b. Isthethedirectional directionalsurvey surveyplan plan acceptable? acceptable? Is Is it ait good, a good, smooth smooth profile? profile? Is Is it it achievable? achievable? Is Is thethe Dogleg DoglegSeverity Severityacceptable? acceptable?Is Is thethe well well path path likely likely to to stay stay within within thethe predicted predicted position position of of thethe target target layer? layer? Does Does it stay it stay above/below above/below anyanyhard hardceiling/floor ceiling/flooror orfluid fluid contact? contact? Is Is there there a collision a collision riskrisk (maybe (maybe thethe directional directional company company missed misseda nearby a nearbywell wellfrom fromthethe anti-collision anti-collision report). report). c. Re-pick c. Re-pick or or check check thethe layers/zones layers/zones areare consistent consistent between between wells. wells. In In most mostcompanies companiesthethepicks picksareare notnot consistent consistent as as different different people people worked workedon ondifferent differentwells wellsat at different different times. times. Consistency Consistency to to a a high high level level is is essential. essential. Work Work outout thethe thickness thickness of of all all thethe different different layers, layers, based based on on your your new new picks, picks, andandthetheTVD TVDdistance distanceof ofthatthat layer layer to to thethe toptop of of thethe target target layer. layer. If If more more layers layers needed, needed, justjust addadd distinct distinct picks picks – it– doesn’t it doesn’t matter matter

in in drilling drilling if if it’sit’s A, A, B, B, CC or or X, X, Y, Y, X, X, as as youyou areare justjust interested interested in inyour yourconsistent consistentstratigraphic stratigraphic position position relative relative to to thethe target. target. Is Is thethe data data good? good? Was Was thethe data data from from a a deviated deviated well well with with dipping dipping strata? strata? – this – this may may significantly significantly affect affect thethe thicknesses. thicknesses.Work Workoutoutaverages, averages, or oruseuseonly onlythethemost mostreliable reliable well(s). well(s). AreAre thicknesses thicknesses variable variable or or consistent consistent – is – is there there a trend? a trend? Does Does thickness thickness vary vary from from thethe shoe shoe to TD to TD of of thethe planned planned well? well? Deeper Deeper water water sediments sediments areare typically typically lessless laterally laterally variable variable andand make make things things easier! easier! Make Make a spreadsheet a spreadsheet with with these these data data andand thisthis is now is now thethe basis basis of ofyour yourlanding landingandandhorizontal horizontal drilling. drilling.Cross Crosscheck checkdata data- do - do notnotblindly blindlyrely relyon ona computer a computer model model which which might might be be based based on on variable variable quality quality picks picks – you – you will will quickly quickly learn learn if you if you cancan rely rely on on thethe computer computer model model or or not.not. d. Ifd. If thethe computer/seismic computer/seismic model model is is badbad or or thethe wellpath wellpath hashas variable variable azimuth, azimuth, then then apparent apparent dips dips cancan be be calculated calculated between between wells wells andand as as azimuth azimuth changes. changes. From From these these data data wewe cancan manually manually construct construct ourour own own sub-surface sub-surface map. map. e. Review e. Review reports reports – – identify identify problems problems in in previous previous wells. wells. Was Was there there lateral lateral variation? variation? Was Was faulting faulting encountered? encountered? Maybe Maybe there there is is a karstic a karstic topography topography which which is is more more variable variable in in thethe drilling drilling area? area? Maybe Maybe channelized channelized deposits deposits were were encountered? encountered? Maybe Maybe thethe zonation zonation (fossils (fossilsor orlithology) lithology)could couldbe be divided divided up up further further in in thisthis area area or or maybe maybe it was it was lessless well well defined? defined? [we[weshould shouldMake Makesure surethatthatourour reports reports include include these these kind kind of of data data as as they they will will help help us us to to do do a better a better jobjob in the in the future]. future]. 3. Armed 3. Armed with with thethe relevant relevant data data andand necessary necessary planning, planning, youyou areare ready ready to to drill drill a successful a successful well. well. A compromise A compromise in the in the client client notnot giving giving thethe contractor contractor confidential confidentialoffset offsetwell welldata dataor or

Petroleum Today -

December 2015

33


in not allowing the geosteerer sufficient time to plan prior to drilling is just that – a compromise. One can militate against this by having correctly skilled staff in the operations role, feeding accurate and high quality (pointed if necessary) data as and when required.

Case study Alaska Example A horizontal well was planned in the Kuparuk sand at Oooguruk Island, off the coast of the North Slope in Alaska. This sand averages 25 ft thick in this area and is fairly clean, with some disseminated and nodular siderite. The Kuparuk is bounded by Kalubik shale above and the Miluveach shale below. Both shales are mechanically unstable when penetrated at high angles, which provides a high potential for stuck pipe. LWD tool selection was based on several criteria. The primary goal was to avoid exiting the top or bottom of the sand. A secondary goal was to remain within the reservoir “sweet spot” manifested in offset logs by a zone of higher porosity. A review of the offset logs suggested that the resistivity contrast at the upper and lower boundaries of the target was significant and that these boundaries could be detected. Sufficient resistivity log responses existed to determine the proximity to the lower and upper boundaries of the target. There was also a significant resistivity contrast across the lower and upper boundaries to provide good characterization of the responses before the bit would exit. This was contingent on the exit being stratigraphic in nature, rather than the result of unforeseen faulting, and the approach angle being low enough to provide warning with the resistivity tools. These constraints indicated that an azimuthal resistivity tool would be the best tool for the job. This tool, while drilling, would be able to estimate the distance and provide a

34 Petroleum Today

- December 2015

defined map of the boundaries while drilling, enabling the geosteering team to avoid the top or base of the sand. Shale “tags” must be avoided to reduce the risk of wellbore instability. The offset logs also indicated internal density and photoelectric effect (Pe) events that, although significant, were probably nodular in nature and not particularly reliable for estimating bed dip or for determining stratigraphic position. Azimuthal density would also be useful in determining apparent structural dip, enabling for more accurate targeting during the drilling process. Up/down photoelectric effect was also considered to useful for determining the orientation of lithological changes while drilling.

Pre-well Modeling A comprehensive model was developed by incorporating the proposed well plan and one geological grid surface. The petrophysical modeling conducted for the pre-well modeling was constrained by the type and quality of the offset resistivity data, the measurement-while-drilling (MWD) tools, and drilling fluid designated for the horizontal section. Comprehensive modeling was performed on several offset datasets to characterize the MWD response while remaining in the target section. Additional modeling was performed to characterize the responses upon exiting the top and bottom of the target sand at 1°angle of intersection. In a simplified description, these curves were generated by being filtered, squared, and convolved. This was the mathematical process of resolving the actual log curves to a predicted sequence of geological beds. The squaring process attempts to fit geological boundaries in the form of a histogram to the actual data. This histogram is then convolved: best fit curve is drawn through the histogram. The convolved curve should closely

match the original filtered curve and provide the best possible synthetic log correlating to that geological pick. The target formation and boundary beds were further modeled, using an inversion method and manual manipulation of the square log to ensure an exact geological to mathematical model. This petrophysical model was the best mathematical model that could be used to predict the tool log responses in the proposed well. The 3D model used one offset well as the basis for pre-well modeling. The well was used as the offset and the MWD data pseudo log projected onto the proposed well path. The model was generated for the offset well, using the supplied grid surfaces as the geological references. In addition, another model was made by using a flat dip and a well path penetrating the top and base of the target sand at 1° relative wellbore inclination. This exit-modeling was performed to examine the difference in tool response and forewarning distances based on various simplified exit geometries. The modeling indicated that distanceto-bed boundary (DTBB) estimates should indicate an approaching boundary 10 to 15 ft TVD in advance. The pre-well modeling refined the tool selection and showed that the responses from the tool would distinguish the top from the base . This was critical because the normal responses from an directional resistivity tool cannot make that distinction. The pre-well modeling helped the team refine the transmitted curve selection to include a single 32 bin image of the 48-in. 500Khz phase resistivity, 48-in. 500Khz average phase resistivity, 112-in. 125Khz attenuation geosignal, 48-in. 500Khz phase geosignal, and the 16-in. 2Mhz average phase resistivity. For tighter structural control, an 8 bin density image was transmitted along with up/ down photoelectric effect to assist with directional lithology determination. A


compensated thermal neutron tool was also incorporated in the string, but the data was not transmitted in real time.

Real-time Geological Modeling The pre-well geological model for this lateral placed the well in the center of the Kuparuk formation. The imported geologic grids predicted that an anticline would be encountered soon after drilling began. The well plan included increasing in the TVD section until the peak of the anticline, and decreasing in TVD until the formation leveled out. All data was transferred in real time and plotted with the geosteering software. Drilling began from the shoe with gamma ray from the previous run used to correlate with the offset well. This process provided a high level of confidence regarding the actual structural location of the wellbore in relation to the geology. A sump was planned at the beginning of the well. As a result of some operational issues, it was decided to trip out of the hole after drilling 250 ft. The data from this first run was unrecoverable; the drilled section was wiped on the way into the hole and this was used for correlation purposes. It was interpreted that the well was very near the bottom of the Kuparuk sand based on the negative geosignals, polarizing up-resistivity, and the DTBB calculations. It was decided to steer the well upward toward the middle of the sand section in the event that any sub-seismic faults existed. During drilling, a small fault was crossed, which placed the wellbore higher in the section than expected . The sudden changes in geosignals, DTBB, and up/down resistivity indicated that a fault had occurred. While steering toward the mid-section of the reservoir after the fault, the bit encountered a siderite nodule in the formation that deflected the bit upward and prevented the BHA assembly from

being turned downward. The DTBB calculation did not indicate that the top was being approached, and although the geosignals gave a clear indication that a conductive boundary was above the wellbore, it was not apparent that the well was near the top of the sand. The resistivity also did not show the expected polarization horn to indicate the approaching top . The well was steered through the top, resulting in an openhole sidetrack. After successfully sidetracking, the azimuthal resistivity began to polarize and the geosignals decreased, which indicated the approach of the lower boundary. The well was steered upward toward the middle of the section to prevent a basal exit. Another fault was encountered. The MWD tool signatures were very similar to the previous fault . Seismic data indicated that an anticline was to be encountered, but the rollover point was never encountered throughout the well. The electrical midpoint of the sand was encountered, indicating that the sand had thinned to 13 ft TVD. Expecting to be on the downward side of the anticline, the well was drilled toward a deeper TVD. The base of the section was encountered, but the well did not cross the boundary. The 16-in. resisivity indicated that, although the well was sitting very low in the section, it did not cross the boundary into the Miluveach shale. Attempts to steer upward, away from the boundary, were unsuccessful because of some siderite affecting BHA steerability until a fault was crossed . A series of faults and fractures were encountered that affected the steering capabilites of the motor . The well was drilled toward the middle of the Kuparuk sand to obtain more horizontal section in the event that the motor could not be guided. The electrical midpoint was again encountered, indicating that the section had thinned to approximately

11 ft TVD. The down resistivity began to polarize and the geosignal became positive, which indicated the approach of the upper boundary (Fig. 86). The bit crossed a fault, resulting in a rapid loss in inclination and a loss of steering capabilities. The well was ended early (Fig. 87).

Lessons Learned These experiences resulted in several lessons learned, which included geology and operations issues. Geology: A lesson learned was that the geology did not follow the seismic interpretation. Toward the end of the well, an anticline was expected to be encountered. The well was steered downward to follow the anticline but the downward limb of the anticline never occurred, which led to encountering the bottom of the formation. The latter part of the well’s geology never provided a downward dip. The latter part of the geology was thought to be part of the limb of the anticline and that the downward limb would have been encountered later in the well if drilling continued. Several faults and sub-seismic fractures were encountered. These features seem to be typical for this part of the Kuparuk reservoir. Hard streaks were encountered, but their origin was thought to be disseminated or nodular, rather than occurring in layers. A significant discovery is that the upper boundary changed along the length of the well. In some areas, this change was a sharply defined resistivity boundary that enabled accurate, reliable inversion of the distance to the boundary. In other areas, particularly where the sidetrack occurred, the resistivity profile is significantly different from offset wells and exhibits a gradational response. This gradational response causes inversion systems to fail because there

Petroleum Today -

December 2015

35





is no defined boundary and affects the resistivity measurement in that a polarization horn does not develop. After learning this lesson, the team realized that the up/down resistivity could be used to avoid future top exits.

Operations The tool was a great asset while drilling this well. Without this tool, there would have been greater uncertainty associated with drilling the well, and a greater chance of exiting the top or bottom of the reservoir. The tool mitigated risk while enabling the geosteering and geologist team to react much faster and more aggressively than a traditional steering string because it described the reservoir in greater detail, and was able to look deeper into the formation than a regular omni-resistivity tool. Because the well was drilled at shallow angles, the top and the bottom bins showed separation when the bottom boundary occurred and the geosignal indicated the direction in which to steer. The DTTB calculation also indicated a

bottom approach and an approximate thickness of the zone. When encountering the bottom of the reservoir, the upper resistivity showed a polarization horn. The polarization horn made it very easy to identify the bottom boundary and enabled a precise placement of the wellbore in the lower part of the reservoir. The geosignals also indicated the location of the well in the reservoir. The upper boundary was detected when the geosignals were higher than the midpoint; the lower boundary was detected when the geosignals were below the midpoint. In practice, the operational team developed a strategy of steering the well by remaining just below the electrical midpoint. This was within the reservoir “sweet spot” but closer to the sharp, consistent basal boundary that yielded the best DTBB estimates.

Conclusion To geosteer a well we must first land the well at the correct stratigraphic level and at the correct angle. This is

REFERENCES 1. Bittar, M., Klein, J., Beste, R., Hu, G., Wu, M., Pitcher, J., Golla, C., Althoff, G., Sitka, V., Minosyan, V., and Paulk, P. 2007. A New Azimuthal Deep-Reading Resistivity Tool for Geosteering and Advanced Formation Evaluation. Paper SPE 109971 presented at the SPE Annual Technical Conference and Exhibition, Anaheim, California, USA, 1114- November. 2. Bittar, M., Hveding, F., Clegg, N., Johnston, J., Solberg, P., and Mangeroy, G. 2008. Maximizing Reservoir Contact in the Oseberg Field Using a New Azimuthal Deep-Reading Technology. Paper SPE 116071 presented at the SPE Annual Technical Conference and Exhibition, Denver, Colorado, USA, 21–24 September. 3. Jackson, C., Illfelder, H., Pineda, G. 1998. Field Implementation of Geological Steering Techniques Optimizes Drilling in HighlyDeviated and Horizontal Wells. Paper SPE 50381 presented at the SPE International Conference on Horizontal Well Technology, Calgary, Alberta, Canada, 14- November. 4. Pitcher, J. 2009. Geosteering Comes of Age. Reservoir 4: 2123-. 5. Seifert, D., Al-Dossary, S., Chemali, R., Bittar, M., Lotfy, A., Pitcher, J., and Bayrakdar, M. 2009. Deep Electrical Images, Geosignal and Real Time Inversion Help Guide Steering Decisions. Paper SPE 123940 presented at the SPE Annual Technical Conference and Exhibition held in New Orleans, Louisiana, USA, 47- October. 6. “A Deep Resistivity Logging-While-Drilling Device for Proactive Geosteering” Seydoux, J., Tabanou, J., De Laet, Y., Omeragic,D., Denichou, J., Ortenzi, L., Iverson, M., Fejerskov, M. The Leading Edge

7.

8. 9.

10.

11.

12. 13.

14.

usually a straight-forward task with the correct planning. In the horizontal section we must always understand (as best as possible with available data) the structure/target position where we have been drilling, where we are now and the most probable structure ahead in the undrilled section.. Every piece of available data should be utilized, To project the target ahead the geosteerer can simply project ahead on the cross section or combine these data with the predicted structure from offset wells and/or seismic data. The success of geosteering is usually directly related to the quality of the geosteerer. By adoption of good standard geosteering techniques, however, any geosteering job can be optimized. I recommended also that the new technology as geosteering could be applied to minimize the risks of losing the targets which reflected on the total drilling time which reflects directly on the total cost of the well.

(2004); 23: 581586.2-. “ A New AzimuthalDeep-Reading Resistivity Tool for Geosteeringand Advanced Formation Evaluation” Bittar, M., Klein, J.,Beste, R., Hu, G., Wu, M., Pitcher, J., Golla, C., Althoff, G., Sitka, M., Minosyam, V., Paulk, M., SPE-109971 SPE AnnualTechnical Conference and Exhibition, Anaheim, 1114- November 2007. “Electromagnetic Wave Resistivity Tool Having A Tilted Antenna For GeosteeringWithin A Desired Payzone” BittarM., USPatent 6,476,609, Nov5, 2002. Balley, G., Al-Ali, H., Amos, S., Dennis, B.:“In the Driver’s Seat with LWD AzimuthalDensity Images,” paper SPE 72282, presented at the SPE/IADC Middle East Drilling Technology Conference, 2224- October 2001, Bahrain. Bittar, M.: “Electromagnetic wave resistivity tool having a tilted antenna for determining the horizontal and vertical resistivitiesand relative dip angle in anisotropic earth formations,” United State Patent 6,163,155, December 19, 2000. Bittar, M.: “Electromagnetic wave resistivity tool having a tilted antenna for geosteeringwithin a desired payzone,” United State Patent 6,476,609, November 5, 2002 Wellbore Geology Using While-Drilling Electrical Images,” paper PP, SPWLA Annual Symposium Transactions.June2007. Hagiwara, T.:“A New Method To Determine Horizontal-Resistivity In Anisotropic Formations Without Prior Knowledge Of Relative Dip”, Paper Q presented at SPWLA Annual Symposium, June 1996 Directional Drilling Training Manual Mike Smith,Dec 96

Petroleum Today -

December 2015

37


NAME: AHMED ZAKARIA NOAH EDUCATION: Associate.Prof at TheAmerican University in cairo PhD. in Petrophysics.Waseda and Menofia University, 2003. ACADEMIC EXPERIENCE: Faculty of Science and Engineering, The AmericanUniversity in Cairo (12010/9/ – Now, full time Ass.Prof of drilling, completion and workover). -Faculty of Petroleum Engineering, The BritishUniversity in Egypt (212010/9/1 – 2008/12/, full time lecturer and Ass. prof), Undergraduate Level: Oil well drilling, Advanced drilling Engineering, Horizontal drilling, Drilling fluids, Principles of Petroleum Geology, Well logging, core analysis, Development Geology, Completion and workover, Reservoir Rock properties, Reservoir Engineering. -Petroleum Research Institute, Cairo (Full time Researcher : (12008/12/-21 2005/12/) Faculty of Science, Menofia University, Egypt : (20032008-), Graduate Level:Method of Prospecting. And Well Logging

Pre-drilling model; the planned well path for the horizontal well is shown in pink.

Simplified model based on a 1° exit through planar geology.

38 Petroleum Today

- December 2015


Figure 1 Drilling near the bottom of the reservoir, crossing a fault

Exit through roof

Petroleum Today -

December 2015

39


Base detected and crossing a fault.

Thinning, drilling down in TVD, fault.

40 Petroleum Today

- December 2015


Fractures, approaching upper boundary

Final well section

Petroleum Today -

December 2015

41






Predicting water in the crest of a giant gas field: Ormen Lange Hydrodynamic Aquifer Model By

M. Boya Ferrero, S. Price, J. Hognestad, Shell

A

bstract

Hydrodynamic aquifer conditions have been described in many basins around the world since first introduced by Hubbert1 in

1953. The hydrodynamic aquifer concept in Ormen Lange has been assessed using iso-potential mapping1 and dynamic simulation of the fluid fill development (i.e. imbibition) over geological time. Simulation shows2,3 the hydro-dynamically tilted/stepping contacts depend on rate of water flow across the aquifer, stratigraphic baffling and faulting, effective aquifer area and reservoir quality (NTG and effective permeability). The role of sealing faults over geological time scale is downplayed in terms of justifying the fluid distribution. Baffling during production is, however, expected. In Ormen Lange the hydrodynamic aquifer has pushed the gas from the crest of the structure into the south of the field leaving behind a northward-thickening prism of residual gas which is imaged by a seismic DHI. Confirmation of the hydrodynamic aquifer scenario in this field was achieved after drilling an appraisal well in the north of the structure that corroborated fluids (water with residual gas) and pressures as prognosed by the hydrodynamic aquifer model.

Introduction The Ormen Lange gas field was discovered in 1997 and has been in production since 2007. It is a large (8Km x 40Km) deep-water turbidite Paleocene reservoir situated 125Km offshore Norway at 700m to 1100m water depth (Fig.1). Ormen Lange sands have excellent reservoir quality with average porosity 26% to 30% and permeability 500 to 1000

46 Petroleum Today

- December 2015

mD. The field is being developed through 4 subsea templates and 10 high rate large borehole wells. The initial Field Development Plan was based on the concept of Ormen Lange being a stratigraphic trap filled to spill point with the gas accumulation being clearly delineated by a seismic DHI; such DHI was postulated to be indicative of perched water on the edges of the structure. The Field Development Plan was defined with the information available from just four exploration and appraisal wells. The need to understand the charge history of the field became apparent when, in 2008, an appraisal well in the northern part of the field encountered only residual gas saturations in the crest of the structure and in the middle of the DHI. It became clear that the DHI could not be used as a proxy for current FWL since seismic cannot distinguish between mobile gas and residual gas saturations. Subsequently, three more appraisal wells have confirmed elevated contacts, residual gas and gas communication across the field.

Alternative scenarios to explain water distribution Three different fluid fill models have been investigated as alternatives to explain the appraisal wells results (Fig.2 & Fig.3): - Breached model. - Perched water model. - Hydrodynamic aquifer model. Key data that provide insight into the fluid distribution in Ormen Lange are (Fig.4 and Fig.5): - Formation pressure data indicating common hydrocarbon


gradient, yet over-pressured water consistently increasing in the direction of the FWL tilt. - Production history and well test data indicating communication/baffling across the field (rather than full compartmentalisation). - Seismic flat spot and AVO effects, sonic logs and nuclear magnetic resonance logs indicative of residual gas. - Similar gas and water (i.e. 9Kppm salinity) composition across the field. Breached models, based on partial breach of the stratigraphic trap and confined by sealing faults, are not supported; such models appear in contradiction with the pressure data and the residual gas saturations. Breaching of the Ormen Lange structure might have occurred over geological time (and may be related to shallow gas); it cannot, however, explain the current fluid distribution encountered by the recent appraisal wells: a) differential depletion through production from the main field is proven, discarding the case for sealing faults; b) gas leakage out of an stratigraphic trap, where volumes of water are limited, cannot justify elevation of FWL by hundreds of meters with respect to the DHI. The perched water model and hydrodynamic aquifer model are both consistent with the pressure-depth data, with a common gas gradient and increasing water pressure in the direction of the tilt. In the perched water setting the water gets trapped during charge and is overpressured by the overlying hydrocarbons (Fig.6 and Fig.7). In the hydrodynamic scenario the hydrocarbons are trapped above flowing ground water. Presence of residual gas saturations is not necessarily discriminative between models; it can be related to paleocharge, paleo-breach, tilting, pressurisation of gas with depth, or other mechanisms common to both models. The perched water model, however, has limitations to justify the residual gas between the present-day FWL and the seismic DHI, and the shallow fluid contacts intersected by the wells that can not be traced back to mapping breakover points in the structure (i.e. 2008 appraisal well found water more than 50 m shallower than predicted by mapping (Fig.8)). The low salinity brine obtained from samples across the field is also not fully consistent with a perching mechanism within a deep-marine environment. Low salinity brine is more consistent with chemistry changes on dewatering basinal shales4,5,6. A phased hydrodynamic model, where charge pre-dates the present water flux, is consistent with all the data gathered to date and it is also aligned with the regional context; the hydrodynamic aquifer has pushed the gas from the crest of the structure into the south of the field leaving a northwardthickening prism of residual gas behind.

Phased Hydrodynamic aquifer scenario Hydrodynamic aquifer conditions have been identified in many basins around the world7,8,9,10 since first described by Hubbert1 in 1953. Under hydrodynamic conditions, the hydrocarbons are in static equilibrium, trapped above ground water flowing in continuous motion. Fluids rearrange themselves into configurations where minimum potential energy is achieved. The contacts get “tilted” in the direction of the aquifer flow despite the very small water flow rates that are sustained over geological timescale. Hydrodynamic “tilted” contacts are in fact non-planar. Simulation3 demonstrates stepping at faults, with structure and stratigraphy. The source of hydrodynamic conditions is in many basins artesian flow (i.e. centrifugal hydrodynamic setting with formation water flowing from the edges of the basin towards the centre). Analogues are the Ghawar field and the North Dome field in the Northern Rub Al Khali basin on Arabian shield. In the North Sea the hydrodynamic flow is attributed to de-watering of the basin shale (i.e. centripetal hydrodynamic setting with water flowing from the basin centre towards the edges due to over-pressure by rapid sediment deposition), analogues would be e.g. the Smørbukk, Britannia and the Mungo fields. From a regional perspective Ormen Lange occurs within a hydrodynamic regime with high overpressure to the north and west and hydrostatic pressure to the south and east11. In the Norwegian margin, overpressures are related to rapid burial of post-rift basin during the Cretaceous-Tertiary followed by a more recent onset of overpressures related to Quaternary glacial sediment loading just 3 Ma ago9. Ormen Lange charge and structuration took place contemporaneously, mainly during the Miocene. It is the combination of charge, structuration and different stages of basin overpressure (Tertiary versus Quaternary) that is responsible for the stepping DHI and present FWL in the field (Fig.5). Initial hydrodynamic conditions, in combination with perched water within the structure can create the stepping northwards paleo-contact delineated by the seismic DHI; an increase of overpressures during the latest glaciation changing the rate of water expulsion from the basin shales can be related to the increase of the hydrodynamic tilt and the residual gas imprint. Recent events, like further burial, structural tilting or the Storegga submarine slide (that occurred some 8000yrs ago, removing more than 600m of overburden in the north of the field) could be responsible for further minor changes on contacts. The total aquifer flux required to maintain the current contact tilt in Ormen Lange represents less than 10% of the

Petroleum Today -

December 2015

47


estimated dewatering rate from Rås basin to the north.

Hydrodynamic aquifer model workflow The hydrodynamic aquifer concept in Ormen Lange has been assessed in 2010 using iso-potential mapping (a concept first introduced by Hubbert1) and dynamic simulation of the fluid fill development (i.e. imbibition) over geological time. Simulation shows the hydro-dynamically tilted/stepping contacts depend on rate of water flow across the aquifer, stratigraphic baffling and faulting, effective aquifer area and reservoir quality (NTG and effective permeability). In that sense, there is a strong correlation between the hydrodynamic contacts and the geological model. 3

In support of the mapping and simulation results, an analysis of the fluid distribution in Ormen Lange was carried out using simple analytical models.

Isopotential maps Hubbert1 described a method for delineating hydrocarbon traps in hydrodynamic settings that accounts for both the buoyancy force and the hydrodynamic effect of an aquifer in flux. Even with ground water in continuous motion, oil and gas will remain in stable equilibrium in configurations where minimum potential energy for these fluids is achieved. The method involves the derivation of potentials for the aquifer and hydrocarbon legs plus the mapping of these into the structural field framework to extract the iso-potential which represents the FWL. The following steps are required: 1. Calculation of pseudo-potential for each well from aquifer formation pressure measurements, according to the relationship ( eq.1):

un is the iso-potential of hydrocarbon of specific gravity ρh (at downhole conditions). The surface representing the tilted FWL is an iso-potential on this map. For a hydrocarbon filled-to-spill it will be the deepest iso-potential on the structure before the hydrodynamic spill point is compromised. In Ormen Lange, average aquifer pseudo-potentials for each well were gridded to generate 2D maps of formation water pseudo-potential. The resultant aquifer pseudo-potential maps are shown in Fig.3. These maps indicate aquifer flux from North to South8,9. Iso-potential maps for Ormen Lange gas are then generated (Fig.9). This method has some shortcomings, specifically since the interpolation/extrapolation method used for mapping of isopotential, does not address directly potentio-metric gradient variations caused by heterogeneity of the aquifer. The proposed progressive hydrodynamic model where charge pre-dates the present aquifer flux would result in an upside to the Hubbert maps (Fig.10): we predict overpressured attic gas pockets, trapped and disconnected from the main gas accumulation; the FWL of each attic gas pocket will be defined by the down-dip hydrodynamic spill points as defined at top structure (rather than the down-dip breakover points at base reservoir required in the “perched water” models12,13). Isopotential mapping forecasts low prospectivity in the North of the field. The far North appraisal well drilled in 2011 confirmed the isopotential mapping prediction.

Hydrodynamic simulation

Where: hw is the pseudo-potential expressed in m of water for a formation water of specific gravity ρw in kg/m3 P is the formation Pressure in Pa, g is the gravitational constant in m/s2, z is TVDSS in m. Average formation water pseudo-potential values derived for each well are then interpolated to derive an aquifer pseudo-potential map. 2. Calculation of an equivalent iso-potential surface for hydrocarbon according the relationship (eq.2):

48 Petroleum Today

Where:

- December 2015

Modelling hydrodynamic conditions over geological time scale (Fig.11and Fig.12) involves an integrated static/ dynamic approach involving testing of different geological models. Recent publications2,3 have been able to describe the effects of aquifer heterogeneity through reservoir simulation. Dennis2,3 efficiently illustrates how hydrodynamic contacts are in fact non-planar. They conform to stratigraphically bounded reservoir quality or thickness variations, respond to structural changes, and step at faults. Initially simple 2D simulations were used to simulate the tilted FWL in Ormen Lange. A number of full scale 3D simulation models were then built to examine the complete



effect of reservoir heterogeneity on the hydrocarbon fill (Fig.13). At the end simulation results were rationalized using analytical models for proof of concept. 2D simulation model - A simple 2D simulation model was constructed to investigate the hydrodynamic concept and to calibrate aquifer flow rate to observed FWL tilt at wells along the strike direction and in a crestal position of the field. The aquifer flow rate resulting in a contact tilt angle consistent with the observed tilt angle in the southern wells was used as a start up calibration point for the 3D simulation model. A drawback of these type 2D simulations is the inability to model flow out of the plane of the section. Water has, in general many more possibilities for finding the path of least resistance in 3-dimensions than in two. This is especially true where fault barriers terminate laterally or where fan systems exhibit variability in rock properties cutting across the field, or where aquifer area underneath the FWL changes the density of the stream lines and hence the contact tilt angle. 3D simulation models - A set of 3D conceptual effective property models were therefore constructed. The objective was first to build a realistic reference case model and then to evaluate sensitivities. A range of conceptual geological scenarios for the north of the structure were constructed (see Fig.14); the objective was to assess reservoir prospectivity within the assumption of hydrodynamic conditions prior to the drilling of the Far North appraisal well. Ultimately, the detailed Ormen Lange base case reservoir model was initialized with hydrodynamic conditions and potential consequences for production were investigated. Based on the basin history (fig. 5) we describe Ormen Lange as a phased-hydrodynamic system, where hydrodynamic conditions co-existed with charge, and changes on the aquifer flow rate resulted in further changes in fluid contacts; however, with the purpose of simplifying simulation, each of the models was initialised in hydrostatic equilibrium (i.e. drainage) with a flat gas water contact prior to setting up the hydrodynamic flow. Pressure gradients were imposed on the model using pseudo water-injection and waterproduction wells at the edges of the model in alignment with regional potentiometric gradients. Simulation of aquifer flux over geological time is performed until steady state conditions prevail and the hydrocarbons reach static equilibrium with the FWL and aquifer pressures matched at each well penetration. Static equilibrium is reached after approximately 100.000 years at which point post-depletion re-calibration of hydrodynamic models can begin. As indicated in literature3,4 our modeling indicates that the hydrodynamic FWL is likely to be intrinsically related to the

50 Petroleum Today

- December 2015

geology of the field. In essence 3D hydrodynamic simulation demonstrates there is a strong correlation between the edges of the fan (low NTG sands) and the presence of flushed hydrocarbons (Fig.13). As such, hydrodynamic aquifer modeling predicts high correlation between sedimentary model and hydrodynamic FWL which would be elevated towards the edge of the good sands (eastern and northern flank) within the general north-south trend dictated by the water source. FWL prediction also depends on aquifer flow rate. Aquifer flow rate is estimated at 50150- m3/day, depending on the specific reservoir quality assumptions. The total flux required represents less than 10% of dewatering rate from the compacting basin to the north. The fluid distribution development over geological time, is shown in Fig.12. Hydrodynamic flow created by dewatering of the over pressured shales has pushed gas from the crest of the structure and the poorer reservoir units into the south of the field leaving residual gas behind. Flattening of the contact tilt angle in the south is an effect of better reservoir properties and increasing effective available area for aquifer flow under the contact. Faults are not sealing over geological time, however, stepping at the contacts is expected and baffling during production is proven. The small hydrodynamic aquifer flow rate over geological time is not expected to impact aquifer mobility during production. Aquifer strength is dictated by the size of the connected aquifer, not by the hydrodynamic nature of the groundwater flow, as demonstrated by conceptual model simulation.

Analytical models To better understand the hydrodynamic aquifer concept in support of the simulation results, an analysis of the fluid distribution in Ormen Lange was carried out using simple analytical models. The groundwater aquifer flow rate can be approximated using Darcy’s law:

Where: Q is aquifer flow rate in m3/s K is the effective permeability in m2, A is the aquifer cross section in m2, μ is the water viscosity in Pa s, ∂p / ∂l in Pa/m is the horizontal component of the pressure gradient in the aquifer. The groundwater aquifer flow rate is estimated to be


approximately 0.42 m/year using the pressure gradient between the southern wells as a gauge, and the assumptions of an effective reservoir permeability of 600 mD in the Egga formation, water viscosity of 0.55 cP and water pressure gradient of 1.25 bar/10km. With the assumption of an aquifer flow rate of 0.42 m/year it will take water entering the sands in the north approximately 100.000 years to reach the southern tip of the field, a distance of approximately 40 km. Stratigraphic and fault barriers would further reduce effective permeability and therefore increase the apparent tilt angle. The viscous or hydrodynamic force will maintain the FWL tilt in proportion to the magnitude of the hydrodynamic pressure gradient. The tilt angle can be expressed in the form:

∂z / ∂l is tilt per unit length of GWC in m/km ∂p / ∂l is pressure gradient in aquifer in Pa / km, g is the gravitational constant in m/s2 Δρgw is the differential density between gas and water in kg/m3 The term g × Δρgw is the difference in vertical pressure gradient between the aquifer water and gas expressed as pressure per unit column height in Pa/m The tilt of the gas water contact is directly proportional to the aquifer pressure gradient, i.e. the aquifer flow rate, and inversely proportional to the permeability. Hence, high permeability rock tends to flatten the contact tilt angle whereas low permeability rock increases the contact tilt angle under the assumption of a constant aquifer rate. The tilt of the gas-water contact at the base of the hydrocarbon column varies across the field in response to the field’s reservoir heterogeneity. Irregularities in the tilted contacts are a response to the variations in aquifer thickness, aquifer flow rate and reservoir quality below the hydrocarbon contact. The fluid tilt ranges from 23 m/km at fan edge in the north to roughly 1 m/km in the south/central area. The two principles forces governing the fluid distribution in Ormen Lange under hydrodynamic flow are:

Δρgw is the differential density between gas and water in kg/m3 (θ ) is the structural tilt angle in degrees,

The gravity force component per unit length in the horizontal plane is directly proportional to the density difference between gas and water times the sine of the formation dip angle. The viscous force per unit length can be expressed with the formula:

Where: Q is aquifer flow rate in m3/d, Kabs is permeability in m2, Krw (Sgr) is relative permeability of water at residual gas saturation Sgr (unitless), A is aquifer area in m2, μ is viscosity in Pa s,

The viscous force per unit length, based on Darcy’s equation, is directly proportional to the aquifer flow rate and water viscosity and inversely proportional to effective permeability and net area to flow. When the gravity force exceeds the viscous force (i.e. gravity dominated flow), gravity will remove the water along the bedding plane. In locations where the viscous forces exceed the gravity force, viscous displacement of gas by water will take place leaving behind water flushed gas residuals (i.e. viscous dominated flow). The dominant driving force for gas distribution is not very sensitive to variation in the viscous force.

● Gravity forces

Model Predictive power and appraisal well results

● Viscous forces created by hydrodynamic flow The gravity force per unit length can be expressed with the formula:

The latest test of the hydrodynamic concept materialized with the drilling of an appraisal well in January 2011, down flank in the middle of the bright seismic amplitude to the Northwest of the Ormen Lange field. The well was on prognosis in terms of depth, reservoir quality, and what is more important, fluid. The well encountered water, overpressured with respect to the previous most northerly well.

Where: g is the gravitational constant in m/s2,

Petroleum Today -

December 2015

51


In terms of the simulation work, it confirmed the most pessimistic hydrodynamic scenario attached to the lower net-togross depositional model in the North of the field (see Fig. 15). In terms of the iso-potential mapping, it confirmed the prediction with accuracy in pressure of 3 bar (see Fig.16). Isopotential mapping predicted a reservoir pressure of 295 -302 bar at the appraisal well location. The actual measured pressure was 298.4 bar. Post-drill isopotential mapping indicates limited reservoir prospectivity in the north, with isolated overpressured gas pockets in isolated attic compartments. The results of the 2011 appraisal well are difficult to reconcile with the perched water model, since an elevated contact at the appraisal well location will require neither gas nor water communication with the main field (which cannot be predicted by mapping the structure).

Model implementation The phased-hydrodynamic aquifer scenario is taken as the basis for further development in Ormen Lange. The alternative perched water scenario has no predictability and invokes capillary discontinuities that cannot be easily justified with the existing data. The risk of bottom water in Ormen Lange is managed in well design through maintaining a stand-off from bottom reservoir and through optimisation of actual well locations for both hydrodynamic and perched water concepts. The current understanding is that water encroachment risks are more likely to be affected by the presence of residuals and actual size of the aquifer rather than by the nature of the water, either perched or hydrodynamic. Hydrodynamic groundwater flow is very slow in comparison with the timeframe of the field production. Static and dynamic models are based on well data plus the learnings from the hydrodynamic aquifer modeling. Addressing the remaining uncertainty for water contacts in Ormen Lange will be tackled in the near future through specific detailed models and appraisal wells for the new templates.

- Phased-hydrodynamic conditions can explain the presence of isolated and overpressured attic-gas compartments in flushed areas, with tilted contacts dictated by down-dip spill points. - Hydrodynamic aquifer conditions are not expected to significantly impact water encroachment at the wells due to the small inflow rates over the field production lifetime. - In Ormen Lange, faults are not sealing over geological time and baffling during production is proven, however, stepping at the contacts is expected due to hydrodynamic conditions.

Acknowledgments The views and opinions presented in this article are those of the operator and do not necessarily represent all the partners. We would like to thank the Norwegian Petroleum Directorate and Ormen Lange Joint Venture partners Dong Energy, ExxonMobil, Petoro, Statoil and Shell for granting permission to publish these data. We would like to thank the Ormen Lange extended team members for their input (G. de Bruijn, A. Cook, M. Grecula, R. Kawar, U. KleinHelmkamp, A. Klinton, K. Noraberg, F. Traufetter) and management for their support since the initiation of the study (G. Bakker, K. Heller, E. Hoogerduijn-Strating, J.P. Koninx, V. Thomas, C. von Winterfeld).

Nomenclature - NTG = net to gross - DHI = direct hydrocarbon indicators - FWL = free water level - AVO = amplitude versus offset - 2D = two dimensions - 3D = three dimensions - hw = aquifer potential

pseudo-

- ρw = water specific gravity

Conclusions - The predictive power of modeling methods like isopotential mapping or hydrodynamic simulation has been proving through the results of an appraisal well in Ormen Lange. - Hydrodynamic aquifer conditions can justify variable FWL in a field, where structure does not justify perched water and without invoking the presence of sealing faults.

52 Petroleum Today

- Phased-hydrodynamic conditions can explain the presence of residual hydrocarbons underneath tilted contacts, even within stratigraphic traps where water source is restricted.

- December 2015

- ρh = hydrocarbons specific gravity

- Q = aquifer flow rate - A = aquifer cross-section - K = permeability - μ = water viscosity - ∂z / ∂l = tilt per unit lenght - ∂p / ∂l = pressure gradient per unit lenght - Δρgw = differential density between gas and water - θ = tilt angle - l = distance in a horizontal plane

- g = gravitational constant

- Krw (Sgr) = relative permeability of water at residual gas

- z = depth

- saturation Sgr

- P = formation pressure

- uh = iso-potential hydrocarbon

of




REFERENCES 1. King Hubbert, M. 1953. Entrapment of petroleum under hydrodynamic conditions. AAPG Bulletin, v.37, p.1954 - 2026 2. Dennis, H., Baillie, J., Holt T., Wessel-Berg, D., 1998. Hydrodynamic activity and tilted oil-water contacts in the North Sea. NPF Conference 3. Dennis, H., Bergmo, P., Holt, T. 2005. Tilted oil-water contacts: modeling the effects of aquifer heterogeneity. Petroleum Geology: North-West Europe and Global perspectives-Proceedings of the 6th Petroleum Geology Conference, 145158-. Geological Society of London 4. Chilingar G, Rieke H, Sawabini S, Ershagi I. 1969. Chemistry of interstitial solutions in shales versus that in associated sandstones. SPE 2527. 5. Rieke H, Chilingar G, Robertson J. 2002. Origin and Prediction of abnormal formation pressures. Elsevier- Developments in Petroleum Science, Volume 50. 6. Aplin, A.C., Fleet, A.J. & MacQuaker, J.H.S. Muds and Mudstones: Physical and Fluid Flow Properties. Geological Society of London Special Publication No. 158, p.137 - 156. 7. Grosjean, Y., Zaugg, P. & Gaulier, J-M. 2009. Burial Hydrodynamics and Subtle Hydrocarbon Trap Evaluation: From the Mahakam Delta to the South Caspian Sea. IPTC Contribution 13962. 8. O’Connor, S., Swarbrick, R. & Jones, D. 2008. Where has all the pressure gone? Evidence from pressure reversals and hydrodynamic flow. First Break v.26, p.55 - 61. 9. Skar, T., Van Balen, R.T., Arnesen, L. & Cloetingh, S. 1999. Origin of overpressures on the Halten Terrace, offshore mid-Norway: the potential role of mechanical compaction, pressure transfer and stress. 10. Zawisza, L., Wojna-Dylag, E., Smulski, R. 2005. Hydrodynamic conditions of hydrocarbon migration and accumulation exemplified be the Pomorsko, Czerwiensk and Zarnowiec Oil fields, Poland. SPE, IPTC 10925 11. Riis, F. & Soltvedt, A. 2009. Pore pressure regimes of the Norwegian continental shelf 12. Vrolijk et al, 2005. Reservoir connectivity analysis- Defining Connections and Plumbing. SPE 93577 13. Tioe, E., Sarif M., Elias M., Vrolijk P. 2005. Understanding the plumbing in your field- application of Reservoir Connectivity analysis to improve Oil and Gas recovery. IPTC 12383

Petroleum Today -

December 2015

53


Fig.1: Ormen Lange Regional map

Fig.2: Sketches illustrating Perched water model (left) and Breached Models (right)

Fig.3: Sketches illustrating Hydrodynamic aquifer model (left) and Phased Hydrodynamic aquifer model (right) where residuals are created by a change of hydrodynamic water flow rate

54 Petroleum Today

- December 2015


Fig. 4: Ormen Lange Pressure-depth data: observe water overpressure increasing in the direction of the FWL tilt whereas the gas gradient remains constant. : ( left) wells drilled preproduction and (right) wells drilled pre- and post-production displaying differential depletion signature.

Fig. 5: Ormen Lange –(top) sketch illustrating progressive change in FWL with respect to (bottom) Petroleum system

Fig.6: Sketch illustrating stratigraphically perched water

Fig.7: Sketches comparing behavior of perched and hydrodynamic concepts

Petroleum Today -

December 2015

55


Fig.8: Mapping perched water pools at the 2008-appraisal well location based on structural break-over points. Observe that perched contact is 52 m deeper than observed FWL

Fig. 10 Isopotential mapping under hydrodynamic aquifer conditions versus phased-hydrodynamic conditions. a) Charge post-dates onset of hydrodynamic aquifer. b) Phased- hydrodynamic aquifer in which charge pre-dates current aquifer flux resulting in trapped attic gas. Updated isopotential mapping predicts isolated pockets of overpressured gas delineated by down-dip hydrodynamic spill points as defined at top structure (green= gas, blue= water with residual gas, isopotential surfaces as solid oblique lines). Fig. 9: Ormen Lange Isopotential map; (left) aquifer formation water pseudo-potential (hw); (right) Top reservoir contours (grey) with DHI (red polygon), and dynamic FWL derived from best-fitting gas iso-potential surface (green area).

56 Petroleum Today

- December 2015



Fig. 11: Hydrodynamic aquifer simulation - base case model. From left to right shows fluid distribution from initialistion (half a million years ago), to first gas production (in 2007) to end of production simulation (in 2032); blue=gas, pink=residual gas, red=water.

Fig. 12: OL Egga Fluid Fill Development starting with initial static conditions until steady state Hydrodynamic Conditions is reached after approximately 0.1 million years( blue= gas, pink= residual gas, red = water).

Fig. 13: Cross-section through appraisal well showing fluid distribution alongside reservoir properties (red = High NTG, High Keff, water, pink = medium NTG, medium Keff, residual gas, blue = Low NTG, Low Keff, gas).

58 Petroleum Today

- December 2015


Fig. 14: Hydrodynamic aquifer fluid distribution versus uncertainty on depositional model: (left) Low and High case scenarios for NTG in the Northern part of the field based on depositional concept; (right) hydrodynamic fluid distribution maps displaying results of the simulation for Low and High NTG scenarios in the Northern part of the field, prior to drilling Far North appraisal well

Fig. 15: Hydrodynamic aquifer prediction for the Low case NTG geological model (see fig x); (left) Pressure-depth plot for the displaying well data as solid lines, and hydrodynamic simulation pressure prediction as crosses). Map of Hydrodynamic aquifer fluid distribution prediction for the Low case NTG geological mode showing glue= gas, red= water, pink=residual gas.

Petroleum Today -

December 2015

59


Fig. 16: Isopotential maps Far North Ormen Lange; (top left) High case isopotential map prior to drilling Far north Appraisal well; (top right) Isopotential map after drilling Far North appraisal well (DHI in red, aquifer pseudo-potential as blue lines, resulting isopotential contours in green and blue areas indicating hydrodynamic closures with progressive deeper isopotentials going northward).(Bottom) cross section illustrating trapped up-dip attic gas as per phased hydrodynamic aquifer model where charge pre-dates current aquifer flux (green= gas, blue= water with residual gas and isopotential surfaces as solid oblique lines).

60 Petroleum Today

- December 2015



ISO 9001:2008 OHSAS 18001:2007

www.tuv.com ID 9105081566

Your Partner for Fluid Management SHOTEC S.A.E an Egyptian Joint Stock Company with German head quarter having more than 15 years experience in the oil and gas field in Egypt. We are Engineering and Contracting as well as supplying company for several types of pumps, compressors, motors, couplings, mechanical seals, piping bulk materials, valves, complete process packages and process plants. In 2006, Together with EGPC “Egyptian General Petroleum Corporation”, Enppi, Petrojet and RuhRPumpen GmbH we established the joint venture sister company “RuhRPumpen Egypt” for the production and service of API centrifugal pumps in Egypt with a share of 15 % from our SHOTEC GmbH Company in Germany. In 2009 SHOTEC entered the gulf market with SHOTEC GULF. In 2013 we established our workshop, authorized service center and warehouse in 6th of October City. In Jan 2015 SHOTEC S.A.E has successfully obtained the quality management system ISO9001 and the Health and Safety System OHSAS18001.

2013, RWE, Disouq Gas Development Project «Engineering & Packaging for Oily Water Loading Package»

2014, Suez Steel, New Sea Water Pipeline «Engineering & Packaging for Trash Water Pumping Station»

2013, ELAB, Water Injection Package «Engineering & Packaging for Water Injection Skid»

CONTACT US EGYPT SHOTEC S.A.E Office: 2 New Marwa Building, Heliopolis, Cairo,Egypt Tel : (+2) 02 26904760 - 26904761 Fax : (+2) 02 26904762 Warehouse and Service Center 17 FRIST INDUSTRIAL ZONE, 6 of October City, Giza, Egypt

GERMANY SHOTEC GMBH Kirneckweg3 78655 Dunningen,Germany Tel.: (+49) 07403 I 91 44 55 Fax: (+49) 07403 I 91 44 66 Home page: www.shoteco.com E-mail: info@shoteco.com

QATAR SHOTEC-GULF St. 4 Wekalat Road, Mars Building, Industrial Area, Doha,Qatar Po. 148 Tel/Fax : +974 4167895 Mob. No. +974 5513097


Your Partner for Fluid Management

Ó

SIHI is manufacturing Liquid Ring/ dry Vacuum Pumps, Liquid ring vacuum compressors, Engineered Systems, Multistage Horizontal pumps, Side Channel Horizontal pumps, and other fluid pumps.

Ó

KTR is manufacturing couplings, clamping sets, torque limiters, torque measuring systems, hydraulic components and brake systems.

Ó

Netzsch Pumps and Systems is manufacturing Progressing Cavity Pumps and Rotary Lobe Pumps and other systems. Netzsch do Brasil is manufacturing multi Screw Pumps with two, three and four screws, suitable for lubricating or semi-lubricating media, low, medium, and high pressures.

Ó

Ó

Lewa GmbH is manufacturing metering, process diaphragm pumps, Plunger and Condition Monitoring Systems, chemical injection packages and odorizing systems.

Ó

Flowserve Valbart is manufacturing API 6D & 6A Trunnion-Mounted Ball Valves, through conduit gate valve and control valves.

Ó

Friatec-Rheinhutte GmbH is manufacturing chemical DIN pumps in all Metallic materials, Solid Plastic Materials or Plastic Lined, and Technical Ceramics.

Ó

PM Piping GmbH is supplying Piping Materials for Petrochemical Plants, Oil Refineries, Offshore Structures, Pipeline Projects, Power Generation and Specials

Ó

SVT GmbH is manufacturing marine, truck and rail loading arms, swivel joints, and complete loading stations.

Ó

ATB SCHORCH is manufacturing low and high voltage electrical motors for several applications including hazard area

Ó

Pioneer Pump is manufacturing portable automatic self-priming pumping equipment for use in mining, energy, oil & gas and industrial industries

Ó

Borsig ZM is designing, manufacturing, supply and erecting reciprocating and integrally geared centrifugal gas compressors and complete packages.

Ó

Chetra is manufacturing mechanical seals, their products and solutions meet the most demanding technical requirements.

www.mydesign.com.eg

Our Partners for Success


Latest technology Subsea measuring tool ENG. KHALED ABOUD Sahara Petroleum Services Company S.A.E “SAPESCO”

It is a wonderful feeling of proud that the latest technology for most precise subsea measuring tool for both shallow and deep waters (PRC) presented to both the international and local market three months ago is purely invented, created and assembled by Egyptian Oil and Gas Service Company. The Photo Realistic 3D Cloud of points is a cutting edge innovative technology to scan complete structures and pipeline sections underwater to create a 3D Cloud of millions of points presenting the as-built of any scanned object with a high accuracy more than 1/1000 (ex: 1mm accuracy in a 1m measurement). There are a number of possible metrology methods including: manual or digital taut wire, inertial measurement, photogrammetry, and scanning 3D Sonar. However, the standard method of spool piece metrology utilises Long Baseline (LBL) acoustic transponders deployed on the structures, pipeline, flanges and adjacent seabed, enabling measurement of the flange separation distances and relative attitudes. Due to the characteristic resolution limitations of the transponders and data redundancy required, it can be very time consuming to set up, gather the data and then recover all the equipment. For a single metrology, this process takes a minimum of 12 hours of survey vessel time, although it can take much

64 Petroleum Today

- December 2015

longer, depending on operational conditions such as water depth, visibility and number of transponders used. It is also possible for metrology operations to be undertaken from much larger assets, such as DSVs or even pipelay vessels, acquiring a considerably larger cost expenditure. This major expenditure, and the consequent effect on overall project effectiveness, was the main motivation behind introducing a technique to qualify and implement a new, cost-effective, far more accurate metrology solution requiring less vessel time than traditional methods. The essential requirements of the new technique were to be strong enough to work reliably in the harsh restrictive subsea environment and to be even more accurate, if not better than the current acoustic method. The main benefit in terms of metrology is a noticeable improvement in operational efficiency, leading to significantly less time spent on each metrology. As previously stated, conventional methods can take between 12 – 18 hours per metrology. Once the Photo Realistic 3D Cloud of Points technology was up and running, the average time spent gathering data for each metrology was only 2 hours plus further benefits in terms of faster, more accurate data collection, and not least, a more superior product being passed on to clients that have been very in-

terested to using this new technology, and there have been numerous positive comments such as: Ó Clear view and precise measurement of pipeline curvature in 3D Ó Accurate measurements for pipeline free span and crossing clearance Ó 3D visualization for structures with high accuracy Ó In hazardous locations, unlike the ongoing procedures there is no need to shutdown to get accurate measurements Ó Ability to measure minor deviations in subsea components according to different operational conditions Ó No expensive or time consuming metrology required for spool measurements

Applications

Ó Out of Straightness Survey up to a cm accuracy in both the vertical and horizontal dimensions to determine the pipeline shape and the ability to compare it from different PRC surveys Ó Pipeline lateral and vertical buckling surveys Ó Spool measurements Ó Subsea construction Ó Decommissioning Ó Repairs Ó Free span identification Ó Chain inspection Ó FPSO inspection


PROSERV. EGYPT

PROSERV is a leading petroleum services company. We professionally maintain joint efforts and facilities to oil and gas companies. We provide high quality business services. Our professional staff provides excellent services to oil & gas, mining, and maritime industries in addition to other commercial and industrial companies. Our services are uniquely tailored and developed to cater for our clients› diverse requirements. Our staff›s competences are continually enhanced through special training programs and our candidates are well cared for. We succeeded in entering the oil & gas market 8 years ago and managed to achieve our Mission and vision; w established a wide network that enables us to gain new clients through our offices in Egypt and abroad. We have the largest client list in the region. We have a wide range of services which include; Rigs Man-up, Logistics Services, Oil & Gas Training, Engineering & Inspection Services, Shipping & Forwarding Services, Mining Services. All of our latest projects and current ones are done to the highest standard of satisfaction to meet and exceed our client’s expectations. We also manage to bring new blood (new foreign companies) to the Egyptian market by international Round Tenders. We established 3 companies to meet all of our clients’ needs and requirements and due to our market experience we provide each client with its applicable work services bouquet; each company has its own qualified and certified team which empowers our group hierarchy and organization leading us to always get the correct and accurate feedback to maintain the right track to follow. We achieved this by bringing together a strong knowledge base and dedication to our client’s satisfaction. We now have 2 offices in Egypt other than our Head office

in Cairo located in Alexandria and Suez. Other offices in Malta & Morocco. Our work force is around 400 site labors and 100 office employees Proserv.now managed to expand in a new downstream business introducing a high quality lubricants and greases to the Egyptian market We believe that our most valuable asset is our employees. ProServ care about employees and the role of work in their lives. We respect employees as individuals, trusting them, supporting them, enabling them to achieve their aims in work and in life. We help them develop their careers through planning, work, coaching and training. We recognize everyone›s contribution to our success - our staff, our clients and our candidates. We encourage and reward achievement. Our professionalism and experience caused us to be granted the highest international certificate such as TRACE (Anti Bribery compliance solution), FCPA (Foreign Corrupt Practices Act), ISO 9001, ISO 18001, ABS, E.I.F.F.A and FIATA. Most of our international registrations are renewed directly and free of charge based on our achievements and work professionalism.

Petroleum Today -

December 2015

65


Industry At A Glance by Ali Ibrahim Table (1) World Crude oil Supply.* Supply (million barrels per day)

U.S (50states)

OECD(1)

North sea(2)

OPEC(3)

OPEC (4)

world

14.07 14.16 14.19 14.32 14.57 14.54 14.57 14.54 14.75 15.31 15.27 15.33 15.04 14.92 14.74

25.67 25.73 25.69 25.75 26.2 25.97 25.90 26.22 26.36 26.69 26.85 26.80 26.78 26.66 26.19

2.86 2.71 2.69 2.65 2.68 2.70 2.63 3.00 2.91 2.86 2.77 2.69 2.99 2.90 2.86

35.85 35.93 36.38 36.45 36.57 36.73 36.43 36.59 37.23 37.36 37.16 37.13 37.73 37.71 37.77

34.2 34.3 34.7 34.7 34.82 35.06 34.68 34.79 35.48 35.61 35.40 35.36 35.93 35.98 36.01

92.11 92.61 92.94 93.06 94.08 93.68 92.86 93.80 94.24 95.76 95.59 95.74 96.49 96.54 95.98

Jul.2014 August September October November December Jan.2015 February March April May June July August September Source EIA

* «Oil Supply» is defined as the production of crude oil (including lease condensate) Natural gas plant liquids, and other liquids, and refinery processing gain. NA = no data available (1) OECD = Organization for Economic Cooperation and Development: Australia, Austria, Belgium, Canada, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, Luxembourg, Mexico, the Netherlands, New Zealand, Norway, Poland, Portugal, Slovakia,South Korea, Spain, Sweden, Switzerland, Turkey, the United Kingdom, and the United States. (2) North Sea includes offshore supply from Denmark, Germany, the Netherlands, Norway, and the United Kingdom (3) OPEC = Organization of Petroleum Exporting Countries: Algeria, Angola, Ecuador, Iran, Iraq, Kuwait, Libya, Nigeria, Qatar, Saudi Arabia, the United Arab Emirates, and Venezuela. (4) OPEC = Organization of Petroleum Exporting Countries doesn’t include Angola.

66 Petroleum Today

- December 2015


Table Table (2) (2) World World Proved Proved Crude Crude Oil Oil Reserves, Reserves, January January 1, 2007 1, 2007 - January - January 1, 2012 1, 2012 Estimates Estimates (Billion (Billion Barrels) Barrels)

Region Region

2009 2009

2010 2010

North North America America

209.910 209.910

206.3 206.3

122.69 Central Central & South & South America America 122.69

2011 2011

2012 2012

2013 2013

2014 2014

208.901 208.901 210.52833 210.52833

216.77 216.77

219.8 219.8

124.64 124.64

237.11 237.11

238.82 238.82

326.00 326.00

328.00 328.00

Europe Europe

13.66 13.66

13.31 13.31

12.08 12.08

11.88 11.88

12.02 12.02

12.28 12.28

Eurasia Eurasia

98.89 98.89

98.89 98.89

98.89 98.89

98.89 98.89

118.80 118.80

118.80 118.80

Middle Middle East East

746.00 746.00

753.36 753.36

752.92 752.92

799.61 799.61

802.00 802.00

803.60 803.60

Africa Africa

117.06 117.06

119.11 119.11

123.61 123.61

124.21 124.21

127.70 127.70

126.70 126.70

Asia Asia & Oceania & Oceania World World Total Total

34.01 34.01 1,342.21 1,342.21

40.14 40.14 1355.74 1355.74

40.25 40.25 1473.76 1473.76

45.36 45.36 1525.96 1525.96

45.30 45.30 1648.80 1648.80

46.00 46.00 1655.50 1655.50

Source Source EIAEIA

Table Table (3) (3) World World crude crude oil production. oil production. ( Million ( Million Barrels Barrels Per Per day day ) )

Libya Libya Sudan Sudan Jul.2014 Jul.2014 August August September September October October November November December December Jan.2015 Jan.2015 February February March March April April May May June June July July August August September September

0.44 0.44 0.53 0.53 0.79 0.79 0.98 0.98 0.62 0.62 0.50 0.50 0.35 0.35 0.36 0.36 0.48 0.48 0.51 0.51 0.37 0.37 0.35 0.35 0.40 0.40 0.36 0.36 0.36 0.36

0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.25 0.25 0.25 0.25 0.25 0.25 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26

Egypt Egypt OPEC(1) OPEC(1) 0.66 0.66 0.66 0.66 0.65 0.65 0.65 0.65 0.65 0.65 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.72 0.72 0.71 0.71 0.71 0.71 0.73 0.73 0.71 0.71 0.71 0.71

29.79 29.79 29.93 29.93 30.32 30.32 30.34 30.34 32.27 32.27 32.42 32.42 32.18 32.18 30.48 30.48 30.72 30.72 30.99 30.99 30.78 30.78 30.74 30.74 32.53 32.53 32.40 32.40 32.55 32.55

Persian Persian North North World World Gulf(2) Gulf(2) Sea(3) Sea(3) 21.80 21.80 2.86 2.86 69.46 69.46 21.74 21.74 2.71 2.71 72.22 72.22 21.90 21.90 2.69 2.69 72.53 72.53 21.70 21.70 2.65 2.65 72.68 72.68 21.63 21.63 2.68 2.68 71.76 71.76 21.98 21.98 2.70 2.70 74.89 74.89 21.78 21.78 2.63 2.63 73.75 73.75 22.45 22.45 2.75 2.75 73.77 73.77 21.90 21.90 2.77 2.77 74.01 74.01 22.57 22.57 2.86 2.86 70.59 70.59 22.59 22.59 2.77 2.77 70.82 70.82 22.60 22.60 2.69 2.69 70.74 70.74 23.18 23.18 2.90 2.90 71.68 71.68 23.16 23.16 2.90 2.90 71.81 71.81 23.08 23.08 2.86 2.86 71.22 71.22

Source Source EIAEIA 1 OPEC: 1 OPEC: Organization Organization of the of the Petroleum Petroleum Exporting Exporting Countries: Countries: Algeria, Algeria, Angola, Angola, Ecuador, Ecuador, Indonesia, Indonesia, Iran,Iran, Iraq,Iraq, Kuwait, Kuwait, Libya, Libya, Nigeria, Nigeria, Qatar, Qatar, Saudi Saudi Arabia, Arabia, the United the United Arab Arab Emirates, Emirates, and and Venezuela. Venezuela. 2 The 2 The Persian Persian GulfGulf countries countries are are Bahrain, Bahrain, Iran,Iran, Iraq,Iraq, Kuwait, Kuwait, Qatar, Qatar, Saudi Saudi Arabia, Arabia, and and the the United United Arab Arab Emirates. Emirates. Production Production fromfrom the the Kuwait-Saudi Kuwait-Saudi Arabia Arabia Neutral Neutral Zone Zone is included is included in Persian in Persian GulfGulf production. production. 3 North 3 North Sea Sea includes includes the United the United Kingdom Kingdom Offshore, Offshore, Norway, Norway, Denmark, Denmark, Netherlands Netherlands Offshore, Offshore, and and Germany Germany Offshore. Offshore.

Petroleum Today -

December 2015

67


Table (4) International petroleum consumption Million Barrels Per Day

OECD(1)

Jul.2014 August September October November December Jan.2015 February March April May June July August September

46.00 45.95 46.13 46.33 46.48 46.88 46.03 47.04 45.93 45.15 45.77 45.78 46.47 46.04 46.34

U.S (50 States) 19.16 19.28 18.83 19.03 19.21 19.30 19.23 19.40 18.86 19.04 19.22 19.54 19.98 19.70 19.32

Canada

Europe

Japan

2.36 2.39 2.36 2.33 2.39 2.36 2.34 2.44 2.36 2.24 2.31 2.40 2.42 2.46 2.42

13.7 13.42 14.21 14.12 13.55 13.19 13.06 13.54 13.50 13.93 13.70 14.19 13.68 13.40 14.18

4.13 4.14 4.17 4.15 4.48 4.98 4.66 4.74 4.45 4.10 3.66 3.86 3.87 3.88 3.90

NonOECD 46.23 46.09 46.46 45.86 46.72 46.12 45.78 46.08 46.19 47.77 47.82 48.07 48.24 48.10 48.48

China

11.07 11.00 11.28 11.02 10.94 10.62 10.71 10.52 10.55 11.43 11.26 11.40 11.27 11.20 11.49

Other Non -OECD 18.42 18.48 18.47 17.96 18.32 18.02 18.01 18.24 18.34 18.88 18.09 18.99 19.39 19.45 19.45

World

92.23 92.04 92.65 92.19 93.20 93.00 91.90 93.12 92.12 92.92 92.60 93.86 94.71 94.14 94.82

Source EIA (1) OECD = Organization for Economic Cooperation and Development: Australia, Austria, Belgium, Canada, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, Luxembourg, Mexico, the Netherlands, New Zealand, Norway, Poland, Portugal, Slovakia, South Korea, Spain, Sweden, Switzerland, Turkey, the United Kingdom, and the United States. Table (5) World Natural Gas Plant Liquid Production , Thousand Barrels Per Day

Saudi January.14

February March April May June July August September October November December January.15

Source EIA

Algeria 356 352 355 355 350 354 369 370 378 380 360 369 360

Canada 643 620 688 760 712 719 700 691 694 699 630 700 750

Mexico 354 328 329 330 320 318 330 335 334 333 335 330 350

Arabia 1,519 1,601 1,606 1,625 1,620 1,619 1,650 1,661 1,645 1,678 1,601 1,650 1,640

Russia 444 439 452 448 445 444 450 455 458 459 480 450 450

United

Persian

States1 2,038 2,175 2,395 2,388 2,390 2,385 2,410 2,419 2,398 2,401 2,175 2,410 2,409

Gulf 2 2,544 2,670 2,695 2,696 2,690 2,692 2,700 2,703 2,705 2,701 2,670 2,700 2,712

OAPEC3 OPEC4 3,058 3,280 3,112 3,275 3,249 3,335 3,121 3,414 3,014 3,420 3,111 3,415 3,115 3,424 3,115 3,428 3,120 3,425 3,121 3,427 3,112 3,275 3,115 3,424 3,151 3,455

World 8,326 8,519 8,386 8,395 8,390 8,395 8,402 8,404 8,407 8,408 8,574 8,457 8,526

1 U.S. geographic coverage is the 50 states and the District of Columbia. Excludes fuel ethanol blended into finished motor gasoline. 2 The Persian Gulf countries are Bahrain, Iran, Iraq, Kuwait, Qatar, Saudi Arabia, and the United Arab Emirates. 3 OAPEC: Organization of Arab Petroleum Exporting Countries: Algeria, Bahrain, Egypt, Iraq, Kuwait, Libya, Qatar, Saudi Arabi Arabia Syria, Tunisia, and the United Arab Emerates Emirates 4 OPEC: Organization of the Petroleum Exporting Countries: Algeria, Angola, Ecuador, Indonesia, Iran, Iraq, Kuwait, Libya, Nigeria, Qatar, Saudi Arabia, the United Arab Emirates, and Venezuela.

68 Petroleum Today

- December 2015


Atlas Copco Equipment Egypt is the direct sales and service operations in Egypt and Lebanon

For further information please contact : Customer.request@eg.atlascopco.com

We handle the sales, service and marketing of air and gas compressors, portable compressors, generators,

mining

and

rock

excavation equipment, construction tools,

pneumatic

and

electric

power tools and assembly systems. The business is backed up by a nationwide sales & maintenance distribution

network

in

Libya,

Jordan & Lebanon. Our products are helping worldclass

customers

to

sustainable

productivity in a wide range of markets, including general engineering and manufacturing, the process industries, construction, automotive, mining etc. Known for our innovative spirit, we are constantly driven to provide high quality, state-of-the-art products, which

improve

our

customers›

efficiency, cut their production costs, and, at the same time, respect the environment.

Today, we employ around 113 of field based sales and service people across the whole Egypt region, The staff is motivated and strives daily to apply the group values, and deliver innovative solutions to our growing list of satisfied customers. The family culture and the entrepreneurial spirit are aligned with

the group culture and beliefs, and form the key local ingredients of our success in delivering sustainable profitable growth in this challenging region. Read more about us in Atlas Copco Egypt: http://www.atlascopco.com. eg/egus/inegypt/aboutus/

Atlas Copco Equipment Egypt Atlas Copco Equipment Egypt P.O. Box 520 El Obour market Cairo, Egypt

Visitors Adress : Phone: +202 4481 4417 / 4481 4208 El Obour city 1st Ind. zone- part 7 +202 4481 4270 / 4481 4431 block 13024 Cairo, Egypt Fax: +202 4481 4341

Reg. No.: 10411 Reg. Office: Nasr City www.atlascopco.com.eg

Petroleum Today -

December 2015

69


Table ( 6 ) International Rotary Rig Count

October-2015 REGION

September-2015

% Change change from prior from prior month month 3 4 2 5 5 45 0 --1 10 1 100 0 0

Land

Offshore

Total

Land

Offshore

Total

AFRICA ALGERIA ANGOLA LIBYA NIGERIA TUNISIA SUDAN

64 49 0 0 4 0 0

29 0 12 1 5 0 0

93 49 12 1 9 0 0

71 51 0 0 5 1 0

25 0 7 1 5 0 0

96 51 7 1 10 1 0

MIDDLE EAST ABU DHABI DUBAI EGYPT JORDAN KUWAIT OMAN PAKISTAN QATAR SAUDI ARABIA SYRIA

349 25 0 34 0 49 68 23 2 106 0

54 23 2 6 0 0 0 0 4 19 0

403 48 2 40 0 49 68 23 6 125 0

349 24 0 32 0 51 66 27 2 106 0

47 16 2 6 0 0 0 0 4 19 0

396 40 2 38 0 51 66 27 6 125 0

0 8 0 2 0 2 2 4 0 0 0

--16 ---5 0 2 4 15 -------0

YEMEN

0

0

0

0

0

0

0

0

EUROPE GERMANY ITALY ROMANIA TURKEY

UNITED KINGDOM

65 3 2 5 29 0

43 0 1 2 0 14

108 3 3 7 29 14

62 1 3 6 28 0

47 0 1 2 0 14

109 1 4 8 28 14

1 2 1 1 1 0

1 66 25 12 3 ---

LATIN AMERICA ARGENTINA BRAZIL COLOMBIA MEXICO VENEZUELA

239 104 16 24 33 52

55 1 20 1 34 3

294 105 36 25 67 55

266 109 19 30 34 59

55 1 21 1 34 3

321 110 40 31 68 62

27 5 4 6 1 7

9 5 11 22 3 12

ASIA PACIFIC AUSTRALIA CHINA OFFSHORE INDIA INDONESIA THAILAND

124 10 0 86 22 5

89 8 26 24 10 14

213 18 26 110 32 19

124 10 0 87 23 5

94 9 29 23 10 14

218 19 29 110 33 19

5 1 3 0 1 0

3 5 9 ---3 ----

Source Baker Hughes

70 Petroleum Today

- December 2015


Source EIA

World Crude Oil Prices US $ per BBL Table (7) Egypt Rig Count per Area

Fig. (2) Natural Gas Prices US $ Per MMBTU

Source EIA

Gulf of Suez Mediterranean Sea Western Desert Sinai Eastern Desert Delta Total

May 15

June 15

July 15

August 15

September 15

8

7

6

6

6

7

7

7

7

7

67

66

63

60

58

7 6 3 98

7 6 3 96

6 6 4 92

6 6 4 89

6 6 4 87

Source Petroleum Today

Fig. ( 3 ) Egypt Suez Blend Price (Dollars per Barrel) based on 33O API

Petroleum Today -

December 2015

71


conversion factors LENGTH

OIL VOLUME CORRECTION FACTORS

1 inch 1 foot 1 yard 1 mile 1 British nautical mile 1 international nautical mile

1 bbl (60 F) = (0.1589873 x CF) m3 (15 C)

= 1.852 kilometres

AREA 1 square inch 1 square foot 1 square yard

= 6.4516 cm2 = 929.0304 cm2 = 0.83612736 cm2 = 4.046.8654 m2 = 0.40468564 hectare = 2.4710538 acres = 2.5899881 km2

1 acre 1 hectare (ha) 1 square mile

VOLUME = 42 gallons (U.S) = 0.158987 m3 = 28.316847 dm3 = 0.76455486 m3 = 1.233.4818 m3 = 4.54609 L = 3.785412 L = 1.136522 L = 0.94635264 L

1 bbl (petroleum U.S.) 1 cubic foot 1 cubic yard 1 acre foot 1 gallon (Imperial) 1 gallon (U.S.) 1 quart (Imperial) 1 quart (U.S.)

= 0.02832784 m3 o (101.325 kPa 15 C)

= 0.157976 m3 = 0.15873 m3 = 0.15881 m3

- December 2015

Correction Factor (CF)

0-6

0.9997

7-35

0.9996

36-51

0.9995

52-64

0.9994

65-78

0.9993

79-91

0.9992

92-99

0.9991

SPEED 1 mile per hour

= 1.609344 km/hr

1 foot per second

= 0.3048 m/s

MASS 1 pound (avoirdupois)

= 0.45359237 kg

1 ounce (avoirdupois)

= 28.349523 g

1 grain

= 64.79891 mg

1 tonne (t)

= 1.000 kg

1 long ton

= 1.016.0469 kg

1 short ton

= 907.18474 kg

1 Btu60/61 per hour

= 0.2929486 W

1 foot-pound per hour

= 0.3766161 mW

1 horsepower (boiler) 1 horsepower (electric) 1 horsepower (hydraulic) 1 horsepower (brake)

= 9.0950 kW

o

o

Propane, butane and ethane converted from 60 F o to 15 C, at equilibrium pressure.

72 Petroleum Today

API Gravity

= 746 W = 746.043 W = 745.69999 W

TEMPERATURE

NATURAL GAS LIQUID VOLUME Ethane: 1 bbl Propane: 1 bbl Butane: 1 bbl

o

POWER

NATURAL GAS VOLUME 1 cubic foot (14.73 o psia. 60 F)

o

= 25.4 millimetres = 12 inches = 0.3048 metre = 3 feet = 0.9144 metre = 1,760 yard = 1.609344 kilometres = 1.8532 kilometres

Degrees Fahrenheit ( F) Degrees Centigrade/ o Celsius ( C) o Degrees Kelvin ( K)

o

= ( C x 9/5) + 32 o

= ( F - 32) x 5/9 o

= C + 273.15

o

= F + 459.67

o

= K x 9/5

Degrees Rankine ( R) Degrees Rankine ( R)

o o


‫‪www.petroleum-today.com‬‬ ‫أول بوابة الكرتونية شاملة لقطاع البرتول‬ ‫احدث املنتجات‬ ‫وتطبيقتها فى‬ ‫قطاع البرتول‬

‫حورارت وحتقيقات‬ ‫وتقارير صحفية‬

‫متابعة اخبارية يومية‬ ‫لقطاع البرتول‬ ‫احمللى والعاملى‬

‫مقاالت‬ ‫علمية‬

‫تصفح وحتميل‬ ‫اجمللة جمانا‬

‫دليل شامل‬ ‫لشركات البرتول‬

‫احصائيات‬ ‫ومؤشرات‬ ‫اقتصادية‬




‫الأ�ستاذ عالء حمودة القائم باأعمال مديرعام فندق لوبا�ساج ‪:‬‬

‫ن�سعى اىل حتقيق اأعلى م�ستويات اجلودة والتميز‬ ‫فى خدمة النزلء‬ ‫يقع الفندق يف منطقة م�سر اجلديدة‪ ،‬املنطقة ال�سكنية والتجارية‬ ‫االكــر اناقــة يف القاهــرة‪ ،‬علــي بعــد ‪ 5‬دقائــق مــن مطــار القاهرة‬ ‫الدويل‪ ،‬وع�سرة دقائق من مركز القاهرة الدويل للموؤمترات وار�ض‬ ‫املعار�ض‪ ،‬كما يبعد ‪ 15‬دقيقة من اكرب مراكز الت�سويق يف املدينة‪.‬‬ ‫الكلمــات ال�سابقــة ت�ســف بدقــة موقــع فنــدق وكازينــو لوبا�ســاج‬ ‫القاهرة وللتعرف اكر على الفندق‪" ،‬جملة برتوليم توداي " التقت‬ ‫بال�سيــد عالء حمودة القائم باعمال مدير عام الفندق الذي يتمتع‬ ‫بخــربة طويلة فــى العمل الفندقــي و ال�سياحي حيــث �سغل العديد‬ ‫مــن املنا�سب االإداريــة يف اأكرب ال�سال�ســل الفندقية فــى العامل مثل‬ ‫�سال�سل ريتز كارلتون و حياة و رادي�سون و كونراد وانرتكونتنينتال‪.‬‬ ‫فكان هذا احلوار‬ ‫‪ Ó‬يف البدايــة ما هى م�ساحــة الفندق وكم عدد الغــرف واالجنحة‬ ‫ومن هم نزالوؤكم؟‬ ‫تبل ��غ م�ساح ��ة الفن ��دق ‪ 12‬ف ��دان وعدد الغ ��رف ‪ 412‬غرفة منه ��م ‪ 18‬جناح‬ ‫ويح�سر لدينا نزالء من كل دول العامل وذلك لطبيعة املوقع اخلا�ص بالفندق‬ ‫حيث يقع جغرافيا بالقرب من مطار القاهرة الدويل ‪.‬‬ ‫‪ Ó‬ما الذي مييز الفندق عن غريه من الفنادق االخرى ؟‬ ‫ينف ��رد الفندق بوج ��ود ‪ 8‬افدنة عبارة عن حدائ ��ق وم�سطحات خ�سراء مما‬ ‫يجع ��ل النزالء ي�سع ��رون بالراحة واال�سرتخاء وي�ستمتع ��ون باملناظر اجلميلة‬ ‫بالفندق كما يتميز بقربه اجلغرايف من مطار القاهرة الدويل ومناطق م�سر‬ ‫اجلدي ��دة والتجمع اخلام�ص وهما من ارقى مناط ��ق مدينة القاهرة وكما ان‬ ‫قربه من مطار القاهرة الدويل يجعله وجهة مميزة لرجال االعمال ‪.‬‬ ‫‪ Ó‬وماذا عن مطاعم الفندق؟‬ ‫فندق لوبا�ساج القاهرة هو فندق ذات خم�ص جنوم وبه ‪ 6‬مطاعم و هى االأزور‬ ‫و االأوراجن ��رى وامل ��ى �سى واملوف ��ى بار و اأفندينا واجلاردين ��و و التى تنتمى‬ ‫ملطابخ عاملية خمتلفة تلبي كافة اذواق نزالء الفندق من خمتلف اجلن�سيات‪.‬‬ ‫‪ Ó‬ما هى ال�سهادات احلا�سل عليها الفندق ؟‬ ‫فن ��دق لوبا�س ��اج حا�سل عل ��ى ثلث �سه ��ادات للآيزو وه ��ى ‪ 9001‬و‪14001‬‬ ‫و‪ 18001‬نتيج ��ة ل�سعي الفندق الدائم لتحقيق اأعلى درجات التميز يف خدمة‬ ‫العم ��لء ويعد ذلك تتويج ��ا جلهود فريق االإدارة املتكامل ��ة بالفندق لتطوير‬ ‫اأدائ ��ه وحر�س ��ه على تطوي ��ر العمل داخل الفن ��دق وتقدمي خدم ��ات متميزة‬ ‫للنزالء ‪.‬‬ ‫كم ��ا ان اإدارة الفن ��دق ت�سع ��ى اىل حتقيق اأعل ��ى م�ستويات اجل ��ودة فى خدمة‬

‫اأجرى احلوار‬

‫جمـــدي عطيــة‬

‫الن ��زالء و املحافظ ��ة عل ��ى بيئ ��ة نظيف ��ة واآمنة واي�س ��ا توفر اأق�س ��ى درجات‬ ‫ال�سلمة املهنية وذلك من اأجل العمل على تن�سيط ال�سياحة امل�سرية والو�سول‬ ‫بها الأعلى درجات التميز واإعادتها اىل �سابق عهدها‪.‬‬ ‫‪ Ó‬كم عدد العاملني بالفندق وكيف يقوم برفع ادائهم وتاهيلهم ؟‬ ‫يبل ��غ عدد العاملني بالفن ��دق ‪ 650‬موظف ويتم رفع االداء من خلل الربامج‬ ‫التدريبية ال�سنوية املتنوعة ملختلف االق�سام مبختلف احتياجاتها‪.‬‬ ‫‪ Ó‬مــا هــي االهــداف التــي ت�سعــى لتحقيقها خــالل عــام ‪ 2016‬و ما‬ ‫ا�سرتاتيجيتكم خالل الفرتة املقبلة؟‬ ‫يف ظ ��ل الظ ��روف ال�سعبة التي متر بها ال�سياحة يف م�سر ي�سعى الفندق اىل‬ ‫الو�س ��ول مب�ستوى خدمة الن ��زالء اىل اعلى درجات اجلودة وان يكون الفندق‬ ‫الوجه ��ة الرتفيهي ��ة االوىل لل�س ��رة امل�سرية خلل احلف ��لت الرتفيهية يف‬ ‫خمتلف املنا�سبات من العام ؟‬ ‫‪ Ó‬كلمة تقولها لنزالء و زوار فندق لو با�ساج فماذا تود ان تقول؟‬ ‫اقول لهم هدفنا االول هو ار�سائكم وان ت�ستمتعوا باوقاتكم معنا‬ ‫‪- December 2015‬‬

‫‪17 Petroleum Today‬‬



‫‪ Ó‬حقل �ال�بي�ض‬

‫وعلى �شعيد �شركات االنتاج التابعة لقطاع البرتول‬ ‫�شهدت عدد من االحداث املهمة ومنها و�شع �شركة‬ ‫بدر الدين للبرتول بئر اإ�شتك�شافية جديدة بحقول‬ ‫االأُوبي�ض بال�شحراء الغربية على االإنتاج مبعدالت‬ ‫تبلغ حواىل ‪ 38‬مليون قدم مكعب غاز و األف برميل‬ ‫متكثفات يومي ًا وذلك بعد انتهاء عمليات احلفر‬ ‫وربط البئر بت�شهيات االإنتاج مبنطقة االأُبي�ض وهو‬ ‫ما اأدى اإىل زيادة اإجماىل اإنتاج ال�شركة من الغاز‬ ‫اإىل اأكرث من ‪ 500‬مليون قدم مكعب يوميا ً ‪.‬‬

‫‪ Ó‬حقل �صمال بلطيم‬

‫يف حني قامت �شركة برتول باعيم برتوبل بعمليات‬ ‫اإكمال البئر �شمال بلطيم ‪ 3-‬مبنطقة دلتا النيل‬ ‫البحرية واختباره وو�شعه على االإنتاج فى االأول‬ ‫من نوفمر ‪ 2015‬مبعدالت اإنتاج ‪ 45‬مليون قدم‬ ‫مكعب غاز يومي ًا وج��ارى حالي ًا البدء فى اأعمال‬ ‫اإع��ادة اإكمال بئر ثانية �شمال بلطيم ‪ 6 -‬وو�شعه‬ ‫على االإنتاج خال �شهرين مبعدل اإنتاج ي�شل اإىل‬ ‫حواىل ‪ 15‬مليون قدم مكعب غاز يومي ًا ‪.‬‬

‫‪�� Ó‬صر�تيجيات جديدة‬

‫ق �ط��اع ال �ب��رتول ي�ح��ر���ض ع�ل��ى ج��ذب امل��زي��د من‬ ‫اال�شتثمارات وح�شب ت�شريحات للمهند�ض طارق‬ ‫املا وزير البرتول والرثوة املعدنية فان ا�شرتاتيجية‬

‫وزارة البرتول امل�شرية واالإجراءات التى مت البدء‬ ‫فى تنفيذها جل��ذب املزيد من اال�شتثمارات فى‬ ‫جمال البحث عن البرتول والغاز وتنميته ادت اىل‬ ‫ارتفاع اإجماىل اال�شتثمارات �شجلت خ��ال عام‬ ‫‪ 2015 / 2014‬حواىل ‪ 7.7‬مليار دوالر ترتفع اإىل‬ ‫ح��واىل ‪ 8.6‬مليار دوالر فى عام ‪2016 / 2015‬‬ ‫م�شر ًا اإىل اأن تدفقات اال�شتثمار بقطاع البرتول‬ ‫امل�شرى ت�شر ب�شورة طبيعية على الرغم من‬ ‫التحديات التى تواجه �شناعة البرتول عاملي ًا‪.‬‬ ‫ك�م��ا ان ال �ق �ط��اع ات �خ��ذ ال �ع��دي��د م��ن ال��ق��رارات‬ ‫واالج��راءات التي من �شاأنها دفع امل�شتثمرين اىل‬ ‫�شخ ا�شتثمارات جديدة يف قطاع البرتول والتى‬ ‫�شملت النجاح فى تخفي�ض م�شتحقات ال�شركاء‬ ‫االأج��ان��ب املرتاكمة اإىل اق��ل م��ن الن�شف خال‬ ‫العامني االأخرين‪ ،‬وتطوير بنود بع�ض االتفاقيات‬ ‫البرتولية لتحقيق ال �ت��وازن باالإ�شافة اإىل طرح‬ ‫املزايدات العاملية والنجاح فى توقيع ‪ 62‬اتفاقية‬ ‫ج��دي��دة با�شتثمارات اأك��رث م��ن ‪ 14‬مليار دوالر‬ ‫باالإ�شافة اإىل ‪ 12‬اتفاقية اأخرى فى مرحلة انهاء‬ ‫االإج���راءات‪،‬وه���ي ال�شيا�شات ال�ت��ي اأث �م��رت عن‬ ‫حتقيق اكت�شافات الغاز الكبرة التي متت موؤخرا‪.‬‬

‫‪� Ó‬تفاقيات خارج �حلد�د‬

‫ام��ا على �شعيد االتفاقيات اخلارجية والتي من‬

‫�شاأنها اي�شا حتويل م�شر اىل مركزا لت�شدير‬ ‫الطاقة فقد وقعت وزارة البرتول اتفاقية مع االأردن‬ ‫وال �ع��راق ت�شمح بتدفق ال�غ��از الطبيعي والنفط‬ ‫العراقي عر االأردن اإىل م�شر الإع��ادة ت�شديره‬ ‫لاأ�شواق االأوروبية‪.‬‬ ‫و�شي�شمح االت��ف��اق ال ��ذي ج ��رى ت��وق�ي�ع��ه مل�شر‬ ‫با�شتراد اخلام والغاز العراقيني عر االأردن اإىل‬ ‫ميناء العني ال�شخنة قبل نقله اإىل حمطات التكرير‬ ‫امل�شرية وبح�شب ت�شريحات البرتول اي�شا فانه‬ ‫اإذا مل تعد م�شر يف حاجة للطاقة العراقية لتغطية‬ ‫اال�شتهاك املحلي فباإمكانها �شخ النفط العراقي‬ ‫عر خط اأنابيب �شوميد اإىل البحر املتو�شط الإعادة‬ ‫ت�شديره بعد ذلك‪.‬‬ ‫وم��ن االتفاقيات املهمة اي�شا اتفاقية ال�شراكة بني‬ ‫الهيئة امل�شرية العامة للبرتول و�شركة كويت اإنرجى‬ ‫للبحث عن البرتول والغاز والذى مبوجبه ا�شتحوذت‬ ‫هيئة ال�ب��رتول على ح�شة ن�شبتها ‪ %10‬ف��ى منطقة‬ ‫االمتياز بالقطاع رقم ‪ 9‬فى حمافظة الب�شرة جنوب‬ ‫العراق والذى بداأ االإنتاج الفعلى من بئر فيحاء ‪ 1-‬فى‬ ‫اأكتوبر اجلارى مبعدل اإنتاج ‪ 5000‬برميل مكافئ يوميا‬ ‫و من املخطط اأن ي�شل االإن�ت��اج اإىل ‪ 20‬األ��ف برميل‬ ‫مكافئ يومي ًا فى عام ‪ 2016‬اإىل اأن ي�شل اإىل ‪ 150‬األف‬ ‫برميل مكافئ يومي ًا بحلول عام ‪. 2021/2020‬‬ ‫‪- December 2015‬‬

‫‪15 Petroleum Today‬‬


‫بعد االكت�شافات االأخرية واالتفاقيات اخلارجية ‪..‬‬

‫هل ت�شبح م�شر مركز حموري اقليمي للطاقة ؟‬ ‫ه��ل ت�صبح م�صر م��رك��ز حم���وري �إقليمى‬ ‫للطاقة ‪ ...‬ت�صا�ؤل يطرح نف�صه بقوة بعد‬ ‫عدد من �الحد�ث ��التفاقيات ��لقر�ر�ت‬ ‫�ملهمة �ل��ت��ي �ق��ع��ت يف �ل�صهور �لقليلة‬ ‫�ملا�صية �متثلت يف جمموعة من �كت�صافات‬ ‫�ل��غ��از �ملهمة يف �لبحر �ملتو�صط ��لدلتا‬ ‫��ي�صا ��صع �بار ��صتك�صافية على خطوط‬ ‫�الن��ت��اج �ق��ي��ام ق��ط��اع �ل��ب��ر�ل بتوقيع‬ ‫�تفاقيات خارجية ت�صمح مل�صر بالتنقيب‬ ‫عن �لبر�ل ���صتري�ده �تكريره‪.‬‬

‫‪ Ó‬ح�ق�ل ظ�ه�ر‬

‫ت��رز اك�ت���ش��اف��ات ال �غ��از ال�ع�م��اق��ة االخ���رة من‬ ‫بني ه��ذه االح��داث خا�شة االكت�شافات اخلا�شة‬ ‫ب�شركة ايني االيطالية يف مياه البحر املتو�شط ويف‬ ‫مقدمتها االكت�شاف التاريخي حقل (ظهر) والذي‬ ‫يت�شمن احتياطيات اأ�شلية تقدر بنحو ‪ 30‬تريليون‬ ‫قدم مكعب من الغاز الطبيعي واعتره اخلراء‬ ‫اكر حقل للغاز الطبيعي يف مياه البحر االبي�ض‬ ‫املتو�شط ومن املقرر ان يبداأ اإنتاج حقل (ظهر)‬ ‫فى نهاية العام ‪ 2017‬مبا يرتاوح بني ‪ 700‬مليون‬ ‫و‪ 1000‬مليون قدم مكعب يوميا ثم يزيد اإىل ‪2700‬‬ ‫مليون ق��دم مكعب يوميا فى العام ‪ 2019‬ح�شب‬ ‫ت�شريحات م�شئويل قطاع البرتول ‪.‬‬

‫‪ Ó‬حقول �صمال �الإ�صكندرية ��أتول‬

‫اما فيما يتعلق ب�شركة "بى بى" الريطانية فقد‬ ‫وقعت مبادئ اتفاق مع املهند�ض طارق املا وزير‬ ‫البرتول للتعجيل بتنمية اأح��دث اكت�شافاتها من‬ ‫الغاز فى حقل اآتول‪.‬‬ ‫وم��ن املتوقع اأن ميكن ه��ذا االت�ف��اق ال�شركة من‬ ‫التعجيل ببدء االإنتاج من كمية تقديرية تبلغ ‪1.5‬‬ ‫تريليون ق��دم مكعب من م��وارد الغاز باالإ�شافة‬ ‫اإىل ‪ 31‬مليون برميل من املتكثفات فى حقل اآتول‬ ‫‪14‬‬

‫‪December 2015‬‬

‫‪Petroleum Today -‬‬

‫للتوريد اإىل ال�شوق املحلى امل�شرى وتتوقع ال�شركة‬ ‫اأن يبداأ االإنتاج فى عام ‪.2018‬‬ ‫ومن املتوقع اأن تتكون اأعمال التنمية الكاملة حلقل‬ ‫اآتول من مرحلتني االأوىل تتكون من عدد ‪ 2‬بئر تنمية‬ ‫مرتبطني بالبنية التحتية القائمة‪ ،‬ومن املتوقع اأن‬ ‫يبداأ ت�شليم االإنتاج فى عام ‪ . 2018‬وجن��اح هذه‬ ‫املرحلة من املتوقع اأن يوؤدى اإىل �شخ ا�شتثمارات‬ ‫اإ�شافية حلفر اآبار اأخرى وزيادة االإنتاج ‪.‬‬ ‫واأع�ل�ن��ت �شركة ب��ي‪.‬ب��ي اي�شا توقيع االتفاقيات‬ ‫النهائية مل�شروع �شمال اال�شكندرية لتطوير خم�شة‬ ‫تريليونات قدم مكعب من موارد الغاز و‪ 55‬مليون‬ ‫برميل من املكثفات با�شتثمارات تقدر بنحو ‪12‬‬ ‫مليار دوالر مع �شركائها‪.‬‬ ‫ومن املتوقع اأن يبداأ االإنتاج من م�شروع غرب الدلتا‬ ‫يف ‪ 2017‬واأن ي�شل اإىل ‪ 1.2‬مليار مرت مكعب يوميا‬ ‫"مبا يعادل نحو ‪ 25‬باملئة من االإنتاج احلايل للغاز‬ ‫يف م�شر وي�شاهم ب�شكل كبر يف زي��ادة معرو�ض‬ ‫الطاقة" يف الباد‪.‬‬

‫‪ Ó‬حقول �ملرحلة �لتا�صعة‬

‫�شركة بي‪.‬جى هى االخرى �شتبداأ اإنتاج املرحلة‬

‫التا�شعة (اأ‪-‬بل�ض) فى الربع االأول من ‪2016‬‬ ‫با�شتثمارات ‪ 350‬مليون دوالر الإن��ت��اج ‪150‬‬ ‫مليون ق��دم مكعبة يوميا من الغاز فى املياه‬ ‫العميقة قبالة غ��رب ال��دل��ت��ا بينما املرحلة‬ ‫التا�شعة (ب) �شيبداأ االنتاج منها فى الربع‬ ‫الثالث من ‪ 2017‬با�شتثمارات ‪ 1.3‬مليار دوالر‬ ‫الإنتاج ‪ 400‬مليون قدم مكعبة يوميا فى املياه‬ ‫العميقة قبالة غرب الدلتا‪.‬‬

‫‪ Ó‬حقل بل�صم‬

‫قائمة االكت�شافات اي�شا ت�شم اعان �شركة "دانة‬ ‫غاز" هى االخرى عن اكت�شافات من الغاز يف بئري‬ ‫"بل�شم‪ "2‬و"بل�شم‪� "3‬شمن منطقة حقوق تطوير‬ ‫حقل بل�شم يف دلتا النيل بتقديرات اأولية لكميات‬ ‫احتياطية من الغاز بحجم مبقدار ‪ 165‬مليار قدم‬ ‫مكعب من الغاز مبا يعادل ‪ 28‬مليون برميل من‬ ‫النفط املكافئ‪.‬‬ ‫واأ��ش��ارت ال�شركة اإىل اأن اإن�ت��اج البئرين �شيفتح‬ ‫املجال ملزيد من فر�ض التطوير التي �شيتم العمل‬ ‫عليها خال العام ‪ ،2016‬متوقعة بدء االإنتاج من‬ ‫حقل بل�شم قبل نهاية العام اجلاري‪.‬‬


‫املراكز لر�صيخ ريادتها ودعم انت�صارها الوا�صع كما‬ ‫توفر مراكز برومن اك�صربي�س جميع اخلدمات‬ ‫امليكانيكة املتكاملة لل�صيارات هذا ومتتلك ال�صركة‬ ‫ما يزيد عن ال� ‪ 400‬مركز برومن اك�صربي�س يف‬ ‫اململكة العربية ال�صعودية ‪.‬‬ ‫‪ Ó‬كم عدد حمطات الوقود ومراكز اخلدمة‬ ‫التي متتلكها برتومني االن يف م�شر وهل‬ ‫هناك خطة للتو�شع خالل الفرتة املقبلة؟‬ ‫متتلك ال�صركة حاليا ‪ 15‬حمطة وقود و‪ 7‬خمازن‬ ‫للزيوت و‪� 16‬صيارة توزيع و مركزين برومن‬ ‫اك�صربي�س اأم��ا عن خطة التو�صع فنحن نهدف‬ ‫بحلول عام ‪ 2017‬اىل امتالك اكرث من ‪ 50‬حمطة‬ ‫وقود اأما بالن�صبة ملراكز خدمة برومن اك�صربي�س‬ ‫فن�صعى اىل امتالك ‪ 15‬مركز خدمة كما اأن هناك‬ ‫نية الن�صاء م�صنع خللط وتعبئة الزيوت ‪.‬‬ ‫‪ Ó‬ما هو حجم احل�شة ال�شوقية لل�شركة‬ ‫االم يف ال�شعودية ؟‬ ‫�صركة برومن يف ال�صعودية تعترب اكرب �صركة‬ ‫زي��وت ت�صحيم يف ال�صوق ال�صعودي ورائ ��دة يف‬ ‫ت�صويق وبيع ال��زي��وت مبختلف ان��واع�ه��ا واي�صا‬ ‫تقدمي خ��دم��ات �صيانة ال�صيارات وه��ي االوىل‬ ‫�صعوديا يف بيع الزيوت وت�صل ح�صتها ال�صوقية‬ ‫اىل اكرث من ‪ % 50‬يف بع�س القطاعات من حجم‬ ‫ال�صوق ال�صعودي ومتتلك ما يزيد عن ‪ 400‬مركز‬ ‫برومن اك�صربي�س ‪.‬‬ ‫‪ Ó‬ومـــاذا عــن �شيا�شة ال�شركة اخلا�شة‬ ‫باعداد وتاهيل الكوادر الب�شرية ؟‬ ‫حتر�س برومن دائما على اختيار كوادرها‬ ‫الب�صرية املوؤهلة التي تقف وراء �صر جناحها‬ ‫يف مراكز البيع وم�صانعها واالدارات املختلفة‬ ‫كما توؤمن برومن ب��ان تطوير اداء العاملن‬ ‫فيها ه��و اح��د ا�صباب جن��اح وت�ق��دم ال�صركة‬ ‫وهو ما �صاعد يف تطوير ثروة ال�صركة الب�صرية‬ ‫وايجاد فريق عمل قوي لبرومن كما حتر�س‬ ‫على توفري بيئة عمل اآمنة وتقوم ال�صركة بتكرمي‬ ‫موظفيها املتميزين ت�صجعيا وحتفيزا لهم‪،‬‬ ‫كما تهتم ال�صركة مبوظفيها وتعقد لهم دورات‬ ‫تدريبية داخلية وخارجية لرفع م�صتوى ادائهم‬ ‫ا�صافة اىل اأن هناك تعاون ق��وي مع ال�صركة‬ ‫االم يف ال�صعودية تتمثل يف ايفاد بعثات لل�صركة‬ ‫وتبادل املعرفة واخل��ربات معها حتى ي�صتفيد‬ ‫كال الطرفن‪.‬‬

‫تنفيذ ‪ 50‬م�صروع خا�س بال�صركة ما بن �صراء وبيع وتطوير‬ ‫ال�صرية الذاتية‬ ‫• ان�صم اىل �صركة برومن يف يناير ‪ 2014‬حتى االن‬ ‫• ه�صام طه بخيت‬ ‫ويعمل مديرعام لفرع ال�صركة يف م�صر‪.‬‬ ‫• حا�صل على بكالوريو�س جتارة‬ ‫• عمل يف احدى �صركات البرول العاملية الكربى يف جنوب • ي�صعى مع فريق العمل مب�صر وال�صعودية لتحقيق نه�صة‬ ‫افريقيا من ع��ام ‪ 2004‬وحتى ع��ام ‪ 2010‬وه��ذه تعد فرة ال�صركة والتقدم ب�صناعة وانتاج وت�صويق الزيوت وال�صحوم‬ ‫الن�صوج املهني وكان �صمن فريق يدير ‪ 28‬دولة و�صارك يف والوقود مب�صر لتحقيق اهداف �صركة برومن الطموحة ‪.‬‬

‫‪ Ó‬هل تخربنا عن التحديات واملعوقات التي‬ ‫تواجه عمل ال�شركة يف م�شر ؟‬ ‫ه �ن��اك ع��دد م��ن امل �ع��وق��ات وم�ن�ه��ا ق �ي��ام بع�س‬ ‫ال�صركات با�صترياد الزيوت غري املرخ�صة وهي‬ ‫م�صكلة ت �وؤرق كل ال�صركات املنتجة واملقننة يف‬ ‫م�صر ومنها برومن حيث يتم ال�صماح با�صترياد‬ ‫هذه الزيوت بدون رقابة من هيئة البرول فقد‬ ‫تكون بع�س هذه الزيوت م�صرة بال�صحة العامة‬ ‫والبيئة حيث تكون ن�صبة الر�صا�س يف العادم‬ ‫املنبعث منها مرتفعة جدا ونحاول تنبيه امل�صتهلك‬ ‫م��ن خم��اط��ر ت�ل��ك ال��زي��وت والب���د م��ن اح�ك��ام‬ ‫الرقابة على دخ��ول هذه الزيوت اىل م�صر من‬ ‫خالل حتليلها يف معامل وزارة البرول امل�صئولة‬ ‫عن املنتجات البرولية‪ ،‬كذلك هناك معوقات‬ ‫تتعلق بتوفري العمالت االجنبية وا�صعارها حيث‬ ‫حتتاجها ال�صركة ال�صترياد املواد اخلام الالزمة‬ ‫للت�صنيع واملعدات اخلا�صة مبحطات الوقود‪.‬‬ ‫‪ Ó‬ما هى امليزات التناف�شية التي تتمتع بها �شركتكم؟‬ ‫ت�صعى ال�صركة با�صتمرار اىل تعزيز قدرتها التناف�صية‬ ‫واحل�ف��اظ على مكانتها الريادية يف ع��امل �صناعة‬ ‫الزيوت بكافة انواعها ومن هذا املنطلق توفر ال�صركة‬ ‫خدمة املختربات املتنقلة التي ت�صل اىل مقر العميل‬ ‫ب�صكل دائم ‪ ،‬حيث يتم فح�س املعدات للتاكد من‬ ‫عملها مب�صتوى االداء املطلوب هذا يف ال�صركة االم‬ ‫يف ال�صعودية ‪ ،‬اما يف م�صر فنمتلك خمترب متنقل‬ ‫يعطي نتائج مبدئية لعينة التحليل واذا لزم االمر‬ ‫نلجاأ لتحليل العينات يف معامل كبرية او يتم ار�صالها‬ ‫اىل ال�صركة االم يف ال�صعودية كما اننا نقدم خدمة ما‬ ‫بعد البيع وهي اخذ عينة من الزيوت املباعة للعميل‬

‫مع االتفاق على عدد �صاعات ت�صغيل معينة وحتليلها‬ ‫ومن ثم نقرر ان ي�صتمر العمل بها او تعديلها ح�صب‬ ‫النتائج املتاحة وكذلك مت اإن�صاء خمزن يف مدينة‬ ‫العا�صر من رم�صان ال�صناعية لنكون بالقرب من‬ ‫العمالء وت�صمح ال�صركة للعميل بتخزين الكمية التي‬ ‫ي�صريها وت�صليمه الكميات التي يحتاج اليها ح�صب‬ ‫احتياجاته اليومية او اال�صبوعية ‪.‬‬ ‫‪ Ó‬وماذا عن �شيا�شة ال�شركة يف تطبيق منظومة‬ ‫اجلودة ؟‬ ‫لقد طبقت �صركة ب�رومن نظام ًا الإدارة اجلودة‬ ‫وفق متطلبات �صهادة االآيزو ‪( 2000 : 9001‬معايري‬ ‫ن �ظ��ام ادارة اجل� ��ودة) حلر�صها ع�ل��ى مواكبة‬ ‫متطلبات العمالء‪.‬‬ ‫وت�ق��وم ال�صركة مبراجعة وحت��دي��د وتطبيق فر�س‬ ‫حت�صن معايري نظام اإدارة اجل��ودة اخلا�س بها و‬ ‫يتطلب التقيد بهذه املتطلبات اأن يعمل جميع العاملن‬ ‫بال�صركة كفريق واحد اأثناء اأدائهم اليومي لنظام‬ ‫اإدارة اجل��ودة واأن ي�صعوا جاهدين لتطوير فاعلية‬ ‫نظام ادارة اجلودة وذلك من خالل و�صع االأهداف‬ ‫وقيا�س وحتليل وحت�صن اأداء نظام ادارة اجلودة‪.‬‬ ‫كما ان هناك رقابة داخلية لل�صركة فنحن نخلط‬ ‫عند �صركات خارجية وهناك برتوكول مع هذه‬ ‫ال�صركات الخذ عينة وحتليلها وال يتم تعئبتها اال‬ ‫بعد اعتمادها من �صركتنا وهذا يعترب اول خط‬ ‫دف��اع عن ج��ودة منتجاتنا ‪ ،‬ثانيا ناخذ عينات‬ ‫ع�صوائية لتحليلها حتى نتاكد من دقة التحاليل‬ ‫و�صالمة النتائج كما ن��اخ��ذ عينات م��ن خدمة‬ ‫ما بعد البيع كما �صبق قوله وذل��ك يعترب ميزة‬ ‫تناف�صية لل�صركة ‪.‬‬ ‫‪- December 2015‬‬

‫‪13 Petroleum Today‬‬


‫املحا�صب ه�صام طه بخيت مديرعام برتومني م�صر‪:‬‬

‫نعمل على تطوير منتجاتنا يوميا ونخطط مل�صاعفة‬ ‫ا�صتثماراتنا يف م�صر بحلول ‪2017‬‬

‫اأجرى احلوار‬

‫جمـــدي عطيــة‬ ‫�شركتنا تقوم بتطوير وحتديث منتجاتها من‬ ‫الزيــوت وال�شحــوم ب�شفة دائمــة وم�شتمرة‬ ‫وتتعــرف على اأحــدث الرتكيبــات الكميائية‬ ‫اوال بــاول حتــى تفــي مبتطلبــات ال�شــوق‬ ‫املتغرية كل يوم ‪ ،‬بهــذه الكلمات بداأ املحا�شب‬ ‫ه�شام طــه بخيت مدير عــام �شركة برتومني‬ ‫م�شر حديثه ملجلة " برتوليم توداي "‬ ‫كما ا�شاف ان �شركة برتومني لديها خطة‬ ‫مل�شاعفة ا�شتثماراتها يف م�شر بحلول العام‬ ‫‪ ، 2017‬ومن جانبه ا�شار املحا�شب �شليم واكد‬ ‫املدير املايل لل�شركة اىل اأن برتومني ت�شعى‬ ‫جاهدة اىل امتالك اكرث من ‪ 50‬حمطة وقود‬ ‫باال�شافة اىل م�شنع خللط وتعبئة الزيوت‬ ‫وعــدد من مراكز خدمة ال�شيارات املتميزة‬ ‫واملعروفة با�شم "برتومني اك�شربي�س " والتي‬ ‫متتلك ال�شركة حاليا منها اكــرث مــن ‪400‬‬ ‫مركز خدمة يف اململكة العربية ال�شعودية‬ ‫ال�صطور القادمة تر�صد تفا�صيل اللقاء‬ ‫‪ Ó‬يف البداية نريد التعرف على ظروف‬ ‫تاأ�شي�س ال�شركة ون�شاطها ؟‬ ‫تاأ�ص�صت �صركة ب��روم��ن ع��ام ‪ 1968‬مبوجب‬ ‫مر�صوم ملكي وكانت امللكية م�صركة بن �صركة‬ ‫ارامكو ال�صعودية مع �صركة اك�صون موبيل بن�صبة‬ ‫‪ % 71‬ل�صركة ارام �ك��و وه��ي ال���ص��رك��ة اململوكة‬ ‫بالكامل للحكومة ال�صعودية ‪.‬‬ ‫ومت تاأ�صي�س ف��رع م�صر ع��ام ‪ 1992‬ومنذ ذلك‬ ‫التاريخ وحتى ‪ 2008‬مت ان�صاء العديد من حمطات‬ ‫ال��وق��ود وت�ق��دمي خدمة متوين ال�صفن علما بان‬ ‫الن�صاط الرئي�صي لل�صركة هو ت�صنيع وت�صويق‬ ‫الزيوت وال�صحوم بكافة انواعها ويف عام ‪2008‬‬ ‫ا�صتحوذت جمموعة الدباغ القاب�صة على ال�صركة‬ ‫االم وفرعها يف م�صر وهي املالك احلايل لبرومن‬ ‫‪12‬‬

‫‪December 2015‬‬

‫‪Petroleum Today -‬‬

‫وعقب ذلك مت تغيري روؤية ال�صركة وتطويرها وكان‬ ‫الن�صيب االك��رب م��ن التطوير لل�صركة االم يف‬ ‫ال�صعودية التي متتلك م�صنع طاقته االنتاجية ‪300‬‬ ‫الف طن من الزيوت عالية اجلودة يف العام ويعترب‬ ‫اك��رب م�صنع يف ال�صرق االو��ص��ط النتاج الزيوت‬ ‫�صواء كانت زيوت حمركات اأو زيوت �صناعية اأو‬ ‫زيوت بحرية اأو زيوت الت�صحيم ‪.‬‬ ‫‪ Ó‬وماذا عن تطوير منتجات ال�شركة حتى‬ ‫تواكب متطلبات ال�شوق ؟‬ ‫�صركتنا تقوم بتطوير وحت��دي��ث منتجاتها من‬ ‫الزيوت وال�صحوم وتتعرف على اأحدث الركيبات‬ ‫ال�ك�م�ي��ائ�ي��ة ب���ص�ك��ل م�صتمر ودائ� ��م ح �ت��ى تفي‬ ‫مبتطلبات ال�صوق وما يحدث فيه من تغريات كما‬ ‫اأن ال�صركة تويل اهتماما خا�صا بجلب اأي تقنية‬ ‫جديدة وبناء قاعدة معرفية ت�صاهم يف تطوير كل‬ ‫ما يتعلق مبوا�صفات الزيوت وال�صحوم باال�صافة‬ ‫اىل االلتزام باملعايري العاملية يف تلك ال�صناعة‬ ‫لدرجة ان ال�صركة اأج��رت تطويرا وتعديال على‬ ‫اأحد منتجاتها من الزيوت خالل عام واحد فقط‬ ‫وه��و تعديل (فليت ما�صر) اىل (�صوبر فليت‬ ‫ما�صر) وبال�صنبة ل��زي��وت حم��رك��ات البنزين‬

‫لدينا منتج مهم وعايل اجلودة وهو ( ‪) A1‬‬ ‫‪ Ó‬ما هي مكانة البحث والتطوير يف ال�شركة؟‬ ‫متتلك ال�صركة االم يف جدة معمل متطور جدا‬ ‫يقوم باعداد االبحاث والدرا�صات بهدف تطوير‬ ‫املنتجات ب�صكل م�صتمر وذلك ينعك�س على باقي‬ ‫الفروع ومنها ف��رع م�صر ال��ذي يقوم يف احلال‬ ‫بتطبيق وتعديل موا�صفات ال��زي��وت وال�صحوم‬ ‫ح�صب ما تو�صلت اليه احدث االبحاث ‪.‬‬ ‫‪ Ó‬كم يبلغ عدد فروع برتومني والدول التي‬ ‫ت�شدر منتجاتها اليها ؟‬ ‫متتلك ال���ص��رك��ة ف ��روع يف م�صر واالم� ��ارات‬ ‫وال�صودان ووكيل يف املغرب كما ت�صدر ال�صركة‬ ‫لدول كثرية مثل العراق وليبيا وال�صن والهند‬ ‫وباك�صتان ودول اخل�ل�ي��ج ودول ��ص��رق ا�صيا‬ ‫وجنوب افريقيا‬ ‫‪ Ó‬هل تقدم ال�شركة خدمات اأخرى للعمالء‬ ‫ا�شافة اىل ت�شويق الزيوت وال�شحوم ؟‬ ‫حتر�س �صركة برومن على تنويع خدماتها وتقدمي‬ ‫اأف�صلها لهذا ابتكرت ال�صركة خدمة مراكز برومن‬ ‫اك�صربي�س حيث يتم تقدمي اأف�صل اخلدمات ل�صيانة‬ ‫حمركات ال�صيارات وت�صعى ال�صركة من خالل هذه‬



‫عمداء الكليات وروؤ�ساء املراكز البحثية والتدريبية‬ ‫واالنتاجية‬ ‫اق�صام اجلامعة‬ ‫اأوال ‪ :‬الدرا�صة االكادميية – الكليات‬ ‫كلية العلوم‬ ‫يتم الرتكي ��ز يف الدرا�سة على العل ��وم اجليولوجية‬ ‫واجليوفيزيائية وكذلك الكمياء والتى تخدم قطاع‬ ‫البحث واال�ستك�ساف‬ ‫كلية هند�صة احلفر واالنتاج‬ ‫يت ��م الرتكيز يف الدرا�سة لهند�سة احلفر من قيا�س‬ ‫االبار واملهمات و اإكمالها وتكنولوجيا االنتاج والرفع‬ ‫ال�سناعي والتي تخدم عملية احلفر واالنتاج‬ ‫كلية التكرير والبرتوكيماويات‬ ‫يت ��م الرتكي ��ز عل ��ى العل ��وم الكميائي ��ة وعملي ��ات‬ ‫التحوي ��ل ال�سناعي واملنتج ��ات البرتولية وف�سلها‬ ‫وغ ��ر ذل ��ك وتخ ��دم الكلي ��ة به ��ذا كل م ��ن قطاع‬ ‫التكرير والبرتوكيماويات‬ ‫كلية التجارة وادارة االعمال‬ ‫وت�سم ��ل انظم ��ة املحا�سب ��ة والعل ��وم الت�سويقي ��ة‬ ‫واالدارية والتى تركز اكر على طبيعة هذه االعمال‬ ‫بقط ��اع الب ��رتول وذل ��ك لتطوي ��ر عملي ��ة االدارة‬ ‫ل�سركات البرتول‬ ‫كلية االت�صاالت وتكنولوجيا املعلومات‬ ‫ت�سم ��ل الدرا�س ��ة عل ��وم ال�سب ��كات واحلا�سب االيل‬ ‫وغره ��ا م ��ن العل ��وم التكنولوجي ��ة العلي ��ا والت ��ى‬ ‫ت�ستخدم االن ب�سكل قوي ومفيد لقطاع البرتول‬ ‫كلية الهند�صة الكهربائية وامليكانيكية‬ ‫وت�سم ��ل الدرا�سة به ��ا علوم التحك ��م االيل والقوى‬ ‫املحرك ��ة وكذل ��ك كاف ��ة العل ��وم امليكانيكي ��ة والتى‬ ‫تخدم �سناعة البرتول يف اكر من مرحلة‬ ‫كلية هند�صة املناجم واملعادن‬ ‫وت�سمل الدرا�سة بها علوم الفلزات واملعادن وكذلك‬ ‫العلوم التى ت�ساهم يف اكت�ساف املزيد من الروات‬ ‫املعدني ��ة لتطوير هذا القط ��اع املهم وا�سافة املزيد‬ ‫من الروات الطبيعية‬ ‫كلية ال�صالمة املهنية والبيئية‬ ‫وت�سم ��ل عل ��وم االم ��ن ال�سناع ��ي واحلماي ��ة من‬ ‫املخاط ��ر التى تتعر� ��س لها ال�سناع ��ة والعاملني‬ ‫به ��ا وكذل ��ك العل ��وم الت ��ى تخ ��دم حماي ��ة البيئة‬ ‫واملحافظة عليها‬ ‫ثانيا مراكز التدريب‬ ‫ت�سم هذه املراكز برامج تعد وفقا الحدث التقنيات‬ ‫‪10‬‬

‫‪December 2015‬‬

‫‪Petroleum Today -‬‬

‫اجلديدة والتى تواكب التطور التكنولوجي وجمهزة‬ ‫عل ��ى اعلى م�ست ��وى تدريبى وتاأهيل ��ى ووظيفة هذه‬ ‫املراك ��ز التدريبي ��ة ه ��ى اعطاء ال ��دورات للعاملني‬ ‫ب�س ��ركات البرتول وذل ��ك يف خمتلف التخ�س�سات‬ ‫ولي�س ��ت مقت�سرة فق ��ط على العل ��وم البرتولية بل‬ ‫ت�سمل اي�س ��ا العلوم التجاري ��ة واالدارية واحلا�سب‬ ‫االيل ‪.......‬اىل غر ذلك‬ ‫يت ��م اعطاء ه ��ذه الدورات مبقابل م ��ادي يعود اىل‬ ‫خزينة اجلامعة للم�ساهمة يف تطويرها‬ ‫ثالثا مراكز البحوث والتطوير‬ ‫ت�س ��م ه ��ذه املراك ��ز برام ��ج لتطوي ��ر املنتج ��ات‬ ‫واال�ستف ��ادة الق�سوى منها وكذل ��ك برامج لتطوير‬ ‫اداء العم ��ل لدى ال�سركات واالهم من ذلك كلة هى‬ ‫ايجاد احلل ��ول التطبيقية والتى تواج ��ه الكثر من‬ ‫ال�س ��ركات واملهند�س ��ني يف مواقع العم ��ل وان تكون‬ ‫هذه احللول قليلة التكلف ��ة وت�ساهم يف رفع م�ستوى‬ ‫العمل وزيادة االنتاج‬ ‫رابعا مراكز االنتاج‬ ‫ه ��ذه املراك ��ز ت�سم ��ل خمتل ��ف التخ�س�س ��ات يف‬ ‫�سناعة البرتول وهدف هذه املراكز هى انتاج بع�س‬ ‫املكون ��ات التى تخدم �سناعة البرتول وكذلك بع�س‬ ‫املنتج ��ات القابلة لال�ستخ ��دام يف �سناعة البرتول‬ ‫ويتم بي ��ع هذه املكونات ال�سناعي ��ة واالنتاجية اىل‬ ‫ال�س ��ركات والعائ ��د من املبيعات ي�ساه ��م يف عملية‬ ‫متويل وتطوير اجلامعة‬ ‫الدرجات العلمية‬ ‫تعط ��ى اجلامع ��ة خريجه ��ا الدرج ��ات العلمي ��ة‬ ‫(البكالوريو� ��س) يف كاف ��ة التخ�س�س ��ات ويعرتف‬

‫بها يف خمتلف املج ��االت كما يوجد باجلامعة ق�سم‬ ‫خا�س بالدرا�س ��ات العليا ويجب ان ت�سعى اجلامعة‬ ‫اىل احل�س ��ول عل ��ى االع ��رتاف ال ��دويل للرام ��ج‬ ‫الدرا�سي ��ة املوج ��ودة بها وال�سه ��ادات التى يح�سل‬ ‫عليها اخلريجني‬ ‫اخلريجني‬ ‫تق ��وم احلكوم ��ة امل�سري ��ة باإب ��رام اتفاقي ��ات م ��ع‬ ‫ال ��دول النفطي ��ة وال�سركات العاملي ��ة الإيجاد فر�س‬ ‫عمل خلريج ��ي اجلامعة الن اله ��دف االأول الإن�ساء‬ ‫اجلامع ��ة هي ا�ستغ ��الل املوراد الب�سري ��ة امل�سرية‬ ‫لزيادة الدخل القوم ��ي وي�ستطيع خريجي اجلامعة‬ ‫االلتح ��اق ب�س ��وق العم ��ل ب�س ��كل ق ��وي م ��ن خ ��الل‬ ‫الرامج التدريبية التى ح�سلوا عليها والتى تواكب‬ ‫ال�سناعة وتطورها ‪.‬‬ ‫واأخـــريا‬ ‫لق ��د �سع ��ت املجل ��ة الإيج ��اد فك ��رة م ��ن املمكن ان‬ ‫ت�ساه ��م فعلي ��ا يف عملي ��ة التطوير لقط ��اع البرتول‬ ‫ونعلم ان ه ��ذه الفكرة لي�ست مكتمل ��ة كل اجلوانب‬ ‫وان ��ا هناك الكثر من ال�سعوب ��ات التى من املمكن‬ ‫ان تواج ��ه تنفيذها ولك ��ن نعلم اي�س ��ا ان كل �سيئ‬ ‫عظيم يواجه الكثر من ال�سعوبات ونتمنى من اهلل‬ ‫ان ي�سبح هذا احللم حقيقة مب�ساهمة كل العاملني‬ ‫بقط ��اع الب ��رتول ونرجوا م ��ن �سيادتك ��م امل�ساركة‬ ‫بتقدمي ارائك ��م ومقرتحاتكم والتى �ستكون جديرة‬ ‫باالحرتام واالهتمام وذلك على الريد االلكرتوين‬ ‫‪mohamed@petroleum-today.com‬‬


‫يف تخ�س�س واحد هو �سناعة البرتول‪.‬‬ ‫‪ -5‬احللول التطبيقية‬ ‫ت�س ��م اجلامع ��ة مراك ��ز بحثية عل ��ى م�ستوى عايل‬ ‫مهمتها االوىل هى و�سع حلول عملية للم�ساكل التى‬ ‫تواجة ال�سركات واملهند�سني يف مواقع العمل‪.‬‬ ‫‪-6‬فر�ص عمل‬ ‫تخلق اجلامعة فر�س عمل جديدة من خالل طاقم‬ ‫عمل كبر من اال�ساتذة واملدربني واملوظفني‬ ‫التمويل‬ ‫يت ��م متوي ��ل اجلامعة من خالل اكر م ��ن جهة لكل‬ ‫جه ��ة من هذه اجلهات دور ه ��ام ورئي�سي يف عملية‬ ‫التاأ�سي�س وكذلك دور هام يف عملية املتابعة‬ ‫اأوال ‪ :‬التمويل احلكومي‬ ‫يت ��م ذلك من خ ��الل وزارة التعليم الع ��ايل ووزارة‬ ‫الب ��رتول امل�سري ��ة حي ��ث يت ��م و�س ��ع خط ��ة عمل‬ ‫بالتن�سيق ب ��ني الوزارتني حيث يدعم قطاع البرتول‬ ‫اقامة اجلامعة ب�سكل مادي ومعنوي وهناك جتارب‬ ‫كثرة ناجحة لقطاع البرتول يف هذا ال�سان‪.‬‬

‫ثانيا‪ :‬متويل القطاع اخلا�ص‬ ‫هن ��اك الكث ��ر م ��ن �س ��ركات الب ��رتول العاملي ��ة‬ ‫واحلكومية واخلا�سة تنفق الكثر على عملية تطوير‬ ‫البحث العلم ��ي ميكن لهذه ال�سركات ان ت�ساهم يف‬ ‫ان�س ��اء اجلامعة من خالل و�سع نظام مل�ساركة هذه‬ ‫ال�س ��ركات يف عملي ��ة التموي ��ل وهذا النظ ��ام يكون‬ ‫حت ��ت ا�سراف مبا�سر م ��ن وزارة البرتول امل�سرية‬ ‫عل ��ى ان يكون له ��ذه ال�سركات بع� ��س املميزات من‬ ‫اخلدمات التي �ستقدمها اجلامعة‪.‬‬ ‫ثالثا‪ :‬التمويل الداخلي‬ ‫�سيت ��م ان�ساء العديد من مراك ��ز التدريب والتاهيل‬ ‫داخ ��ل اجلامع ��ة ه ��ذه املراك ��ز ت�ستقب ��ل املتدربني‬ ‫م ��ن ال�س ��ركات واجله ��ات املختلف ��ة نظ ��ر مقابل‬ ‫مادي �سي�ساهم يف عملي ��ة التمويل واي�سا �ستمتلك‬ ‫اجلامع ��ة ق�س ��م خا�س لالنت ��اج وتطوي ��ر املنتجات‬ ‫والهدف منه الربح‬ ‫الهيكل التنظيمي‬ ‫تك ��ون اجلامعة تابعة ل ��وزارة التعليم العايل وحتت‬

‫ا�س ��راف كامل من وزارة البرتول حيث يحق لوزارة‬ ‫الب ��رتول التدخ ��ل املبا�س ��ر يف كل اجلوان ��ب م ��ن‬ ‫طريق ��ة الدرا�سة وكذلك املناهج التى يتم درا�ستها‬ ‫وامل�ستوى التاهيلي للخرجني وذلك من خالل جلنة‬ ‫م�سرتكة بني كال الوزارتني‪.‬‬ ‫يتكون الهيكل التنظيمي‬ ‫رئي�ص اجلامعة‬ ‫يت ��م اختياره م ��ن خالل اللجن ��ة امل�سرتك ��ة لوزارة‬ ‫التعليم العايل ووزارة البرتول‬ ‫جمل�ص االدارة‬ ‫ويتك ��ون من جمموع ��ة خمتارة من خ ��راء التعليم‬ ‫ورجال �سناعة البرتول‬ ‫وكالء اجلامعة‬ ‫وكيل اجلامعة لل�سئون االكادميية‬ ‫وكيل اجلامعة لالبحاث والدرا�سات العليا‬ ‫وكيل اجلامعة للتدريب والتاهيل‬ ‫وكيل اجلامعة لتطوير املنتجات‬ ‫وكيل اجلامعة ل�سئون البيئة‬ ‫‪- December 2015‬‬

‫‪Petroleum Today‬‬

‫‪9‬‬


‫فكرة تطرحها جملة برتوليـم تـوداي‬

‫اجلـامـعـة الـمـ�صريــة للبـرتول‬

‫يف �صياق �صعى املجلة للم�صاهمة‬ ‫االيجابية يف عملية تطوير البحث‬ ‫العلمى لقطاع البرتول وو�صع هذا‬ ‫الهدف امامها يف املرحلة القادمة فقد‬ ‫دعت املجلة منذ بدايتها اإىل اإيجاد‬ ‫اإطار منظم متر من خالله كل اجلهود‬ ‫يف �صكل قانوين وحتت منظومة حمددة‬ ‫لت�صبح هذه اجلهود اأكرث فاعلية‪.‬‬ ‫وبعد تفكري طويل يف اكرث من اجتاه‬ ‫ا�صتطاعنا ان ن�صل اىل فكرة جديدة‬ ‫من املمكن ان تكون هى االطار القانوين‬ ‫املنظم الذى متر من خاللة جهود‬ ‫التطوير وهذه الفكرة هى اإقامة‬ ‫جامعة متخ�ص�صة للبرتول‪.‬‬ ‫ويف ال�صفحات التالية �صنطرح الفكرة‬ ‫على اجلميع و�صت�صعى املجلة اىل عر�ص‬ ‫الفكرة على اكرث من جهة وكذلك‬ ‫ننتظر من �صيادتكم االفكار واملقرتحات‬ ‫والتى نثق انها م�صاهمة فعالة‪.‬‬ ‫‪8‬‬

‫‪December 2015‬‬

‫‪Petroleum Today -‬‬

‫تقدمي‬ ‫اأن فك ��رة ان�س ��اء جامعة للبرتول عل ��ى ار�س م�سر‬ ‫له ��ا ابع ��اد كث ��رة ومتع ��ددة ويف اك ��ر م ��ن اجتاة‬ ‫واي�س ��ا حتمل الفك ��رة العديد من االه ��داف والتى‬ ‫�ستجل ��ب الكث ��ر م ��ن الفوائ ��د لي� ��س فق ��ط لقطاع‬ ‫الب ��رتول امل�س ��ري ب ��ل والعرب ��ي اي�س ��ا فاجلامعة‬ ‫لي�س ��ت جامع ��ة للدرا�س ��ة االكادميية فق ��ط ولكنها‬ ‫حتمل اجلان ��ب العملي اكر ولي� ��س التخ�س�س بها‬ ‫يقت�سر على علوم البرتول فقط ولكن يت�سع لي�سمل‬ ‫كل العل ��وم االخ ��رى والتي يتطلبها �س ��وق العمل يف‬ ‫قطاع البرتول من خمتل ��ف التخ�س�سات واي�سا ال‬ ‫تقت�سر اجلامعة على الكلي ��ات ولكن ت�سمل احدث‬ ‫مراكز للتدري ��ب والتاهيل ومراك ��ز بحثية متطورة‬ ‫لتقدمي حلول مل�ساكل ال�سناعة‪.‬‬ ‫االهداف‬ ‫‪ -1‬ا�صتثمار املوارد الب�صرية‬ ‫متتل ��ك م�سر ث ��روة ب�سري ��ة كبرة ميك ��ن ا�ستغالل‬ ‫هذه الروة واال�ستفادة منها من خالل اعدادها على‬

‫اعل ��ى م�ست ��وى وتقدمي ه ��ذه الطاقة الب�سري ��ة ل�سوق‬ ‫العم ��ل لي�س فقط داخل م�سر ولكن للمنطقة العربية‬ ‫واالفريقية‪ .‬وجميع الدول الواعدة يف هذا القطاع‬ ‫‪ -2‬التاهيل العملي‬ ‫حتت ��وى الدرا�سة يف اجلامع ��ة على اجلانب العلمي‬ ‫املواكب للجان ��ب العملي حيث يتم التدريب املبا�سر‬ ‫ملواقع العمل طوال العام الدرا�سى واي�سا من خالل‬ ‫مراكز التدريب داخل اجلامعة‬ ‫‪ – 3‬منظومة قانونية‬ ‫ايج ��اد اطار قانوين ي�سم كاف ��ة اجلهود املبذولة‬ ‫م ��ن اجله ��ات املتع ��ددة لعملي ��ة تطوي ��ر البح ��ث‬ ‫العلمي لت�سبح اجلامعة ه ��ى املنظومة الرئي�سية‬ ‫لهذه اجلهود‬ ‫‪ -4‬التخ�ص�ص واالتقان‬ ‫اثبتت التجارب انه كلم ��ا زاد التخ�س�س يف جمال‬ ‫واح ��د كلم ��ا زادت درجة االتقان له ��ذا التخ�س�س‬ ‫والدرا�سة يف اجلامعة �سواء كانت لعلوم البرتول او‬ ‫العلوم االخرى ه ��ى ذات طبيعة خا�سة كلها ت�سب‬



‫�وباما يعلن رف�ض م�شروع خط �نابيب كي�شتون �إك�ض �إل‬ ‫اأعلن الرئي�س المريكي باراك اوباما رف�س ادارته خلط انابيب كي�صتون اإك�س اإل النفطي من كندا‬ ‫ايل نربا�صكا وذلك بعد اكر من �صبع �صنوات من اإقراح امل�صروع املثر للجدل لول مرة‪.‬‬ ‫وقال اوباما "وزارة اخلارجية قررت ان خط انابيب كي�صتون اإك�س اإل لن يخدم امل�صالح القومية‬ ‫للوليات املتحدة‪ .‬انا اتفق مع ذلك القرار‪".‬‬ ‫كان من املخطط ان يربط كي�صتون اإك�س اإل �صبكتن قائمتن خلطوط انابيب يف كندا والوليات‬ ‫املتحدة جللب اأكر من ‪ 800‬األف برميل يوميا من النفط اخلام الثقيل والبيتومن املخفف من‬ ‫الرمال النفطية يف األربتا ايل م�صايف التكرير يف اإيلينوي ثم ايل خليج املك�صيك يف نهاية املطاف‪.‬‬ ‫ويف عام ‪� 2008‬صعت �صركة تران�س كندا كوربري�صن التي كانت تاأمل ببناء خط النابيب للح�صول‬ ‫على الذن الرئا�صي املطلوب للقطاع الذي يعرب احلدود بن البلدين‪.‬‬

‫مبعدل ‪ 45‬مليون قدم مكعب غاز ‪...‬‬ ‫برتوبل ت�شع بئر �شمال بلطيم ‪ 3‬على �النتاج‬

‫قامت �صركة برول باعيم بروبل بعمليات اإكمال‬ ‫البئر �صمال بلطيم ‪ 3-‬مبنطقة دلتا النيل البحرية‬ ‫واختباره وو�صعه على الإنتاج فى الأول من نوفمرب‬ ‫احلاىل مبعدلت اإنتاج ‪ 45‬مليون قدم مكعب غاز‬ ‫يومي ًا ‪ ،‬وجارى حالي ًا البدء فى اأعمال اإعادة اإكمال‬ ‫بئر ثانية �صمال بلطيم ‪ 6-‬وو�صعه على الإنتاج‬ ‫خال �صهرين مبعدل اإنتاج ي�صل اإىل حواىل ‪15‬‬ ‫مليون قدم مكعب غاز يومي ًا ‪.‬‬ ‫ووفقا لبيان وزارة البرول اأ�صار املهند�س عاطف‬ ‫ح�صن رئي�س ال�صركة اإىل اأنه مت ا�صتكمال اأعمال‬ ‫حفر البئر نيدوكو �صمال غرب ‪ 2-‬مبنطقة دلتا‬ ‫النيل والو�صول اإىل الطبقات العميقة واأنه مت و�صع‬ ‫البئر على الإنتاج من خال الت�صهيات املتاحة‬ ‫مبنطقة اأبوما�صى فى اأغ�صط�س املا�صى مبعدلت‬ ‫اإنتاج جتاوزت ‪ 88‬مليون قدم مكعب غاز يومي ًا ‪.‬‬ ‫كما اأو�صح اأنه مت و�صع خطة حلفر عدد من الآبار‬ ‫لتقييم وتنمية منطقة امتياز نيدوكو‪ ،‬حيث مت حفر‬ ‫البئر نيدوكو �صمال غرب ‪ 3-‬ومت النتهاء من معظم‬ ‫اأعمال احلفر واكت�صاف امتداد للطبقة احلاملة‬ ‫للغاز ب�صمك اأكثثرب من املكت�صف فى البئر نيدوكو‬ ‫�صمال غرب ‪ 2-‬بحواىل ‪ 7‬مر ‪ ،‬وهو موؤ�صر اإيجابى‬ ‫ي�صر اإىل زيادة كميات الغاز فى املخزون اجلوفى‪.‬‬ ‫‪6‬‬

‫‪December 2015‬‬

‫‪Petroleum Today -‬‬

‫�المار�ت ما�شية فى خططها لزيادة �نتاج �لنفط �ىل ‪ 3.5‬مليون برميل يوميا‬ ‫قال وزير الطاقة الإماراتي اإن باده ما�صية قدما يف خططها ل�صتثمارات النفط والغاز رغم الراجع احلايل‬ ‫يف اأ�صعار اخلام‪.‬‬ ‫وقال الوزير �صهيل بن حممد املزروعي ردا على اأ�صئلة لرويرز على هام�س منا�صبة لقطاع الطاقة يف اأبوظبي‬ ‫"ال�صتثمارت ما�صية قدما‪ ..‬نوا�صل ا�صتثماراتنا‪".‬‬ ‫ورد بالإيجاب عندما �صئل اإن كانت الإمارات العربية املتحدة ع�صو منظمة اأوبك �صتزيد طاقة اإنتاجها النفطي‬ ‫اإىل ‪ 3.5‬مليون برميل يوميا بحلول ‪.2017‬‬ ‫وقال فاحت برول مدير وكالة الطاقة الدولية اإن من املتوقع اأن تنخف�س ال�صتثمارات العاملية يف قطاع النفط ‪20‬‬ ‫باملئة هذا العام يف اأكرب تراجع لها على الإطاق‪.‬‬ ‫وقال املزروعي اإن باده �صت�صتثمر ‪ 35‬مليار دولر لتنويع موارد الطاقة واحلد من اعتمادها على واردات الغاز‬ ‫الطبيعي لتوليد الكهرباء‪.‬‬

‫�إ�شادة باأد�ء فندق لوبا�شاج يف موؤمتر �لثقافة �لعربية‬

‫نظمت مكتبة الإ�صكندرية موؤمتر الثقافة العربية بح�صور عدد من وزراء الثقافة والفنانن العرب وقد اأ�صاد‬ ‫امل�صاركون يف املوؤمتر بال�صتقبال املميز و اأ�صهى املاأكولت املقدمة من فندق لوبا�صاج ويظهر يف ال�صورة‬ ‫الدكتور اإ�صماعيل �صراج الدين مدير مكتبة الإ�صكندرية و وليد �صاح مدير اإدارة املبيعات بفندق لوبا�صاج‬ ‫وكا من �صبحي عبد املجيد و حممود �صريف‬ ‫يذكر اأن جمموعة لوبا�صاج ت�صم فندق لوبا�صاج القاهرة و مطعم برا�صيورى مبكتبة الإ�صكندرية ‪.‬‬


‫�شل تنتهي من حفر ‪� 3‬آبار ر�أ�شية بطبقات �حلجر �جلريى ب� �أبولونيا‬ ‫انته ثثت �صركة �صل الهولندية من حفر ‪ 3‬اآبار راأ�صية بطبقات احلجر اجلرى فى حقل اأبولونيا جلمع املعلومات‬ ‫الازمة لت�صميم الآبار الأفقية‪ ،‬وت�صميم طرق التك�صر الهيدروليكي‪ ،‬وبلغت النفقات على امل�صروع نحو ‪4.5‬‬ ‫ملي ثثون دولر حت ثثى الآن‪ .‬ونقا عن جريدة الربو�صة امل�صرية قال م�صئول ب ثثارز بالهيئة العامة للبرول اإن �صل‬ ‫كانت ت�صتهدف حفر ‪ 40‬بئرا لتنمية انتاج الغاز من حقل ابولونيا ولكن ا�صتمرار تراجع ا�صعار برنت بالأ�صواق‬ ‫العاملي ثثة اأدى اإىل تخفي�س ال�صرك ثثة لعدد الآبار امل�صتهدف حفرها بالوقت احل ثثاىل‪ .‬وتراوح تكلفة حفر البئر‬ ‫الراأ�صي ثثة بحقل ابولونيا ب ثثن ‪ 1‬اىل ‪ 1.5‬مليون دولر ويبلغ انتاجها نحو ‪ 2‬ملي ثثون قدم مكعبة غاز يومي ًا وتقوم‬ ‫�ص ثثل بحفر هذا النوع من الآب ثثار‪ .‬واأو�صح اأن �صركة اأبات�صى �صتقوم بحفر الآبار الأفقية بحقل اأبولونيا خلربتها‬ ‫فى هذا النوع من الآبار فى مناطق امتيازها باأمريكا‪ ،‬وتقدر تكلفة البئر الواحدة من ‪ 5‬اىل ‪ 6‬ماين دولر‪.‬‬

‫م�شر تغرم ناقلة نفط �أوروبية ‪ 58‬مليون جنيه لقيامها بك�شر خط‬ ‫�أنابيب �لبرتول بال�شوي�ض‬ ‫غرم ثثت حمكمة ال�صوي� ثثس البتدائية برئا�صة امل�صت�صار حممد يحي راأفت‪ ،‬ناقل ثثة البرول الأجنبية "نا�صو‬ ‫انرج ثثى"‪ ،‬وميتلكها �صركاء من دول اأوروبية‪ ،‬وترفع عل ثثم ليربيا مبلغ ‪ 58‬مليون و‪ 850‬األف جنيه‪ ،‬ل�صالح‬ ‫قط ثثاع ال�صيد يف البح ثثر الأحمر‪ ،‬وذلك بعد قيامها بك�صر خط اأنابيب الب ثثرول بال�صوي�س يف مياه البحر‬ ‫مبيناء الزيتيات وتلويث مياه البحر مبا يوازي ‪4‬اآلف برميل برول خام‪.‬‬ ‫كانت ناقلة برول خال قيامها ب�صخ زيت البرول يف خط اأنابيب بالبحر الأحمر‪ ،‬ك�صرت اخلط وت�صببت‬ ‫يف ت�صرب ‪ 4‬اآلف برميل من زيت البرول اخلام اإىل مياه البحر‪ ،‬وتلوث م�صاحات �صا�صعة من مياه البحر‬ ‫الأحمر وخليج ال�صوي�س‪ ،‬وتدمر البيئة البحرية والذريعة والأ�صماك يف مناطق التلوث‪.‬‬

‫�لكويت ‪ 5 :‬مليار�ت دوالر لتطوير ‪ 4‬حقول جور��شية للنفط و�لغاز‬ ‫نقلت جريدة النباء الكويتية عن م�صادر نفطية م�صوؤولة اأن �صركة نفط الكويت ا�صتقبلت العرو�س املالية‬ ‫مل�صروع تطوير ‪ 4‬حقول نفط وغاز يف �صرق وغرب الرو�صتن وغرب ال�صابرية وام نقا بقيمة ‪ 1.5‬مليار‬ ‫دينار ما يعادل ‪ 4.95‬مليارات دولر‪ ،‬م�صرة اإىل اأن ‪� 3‬صركات تقدمن بعرو�س مالية فقط من اأ�صل ‪16‬‬ ‫�صركة موؤهلة للم�صروع‪.‬‬ ‫ويهدف امل�صروع اإىل تطوير تلك احلقول لتبلغ الطاقة الإنتاجية لهم ‪ 40‬األف برميل‪ ،‬ومت اإ�صناد امل�صروع‬ ‫اإىل مديرية �صمال الكويت يف �صركة نفط الكويت بدل من جمموعة امل�صاريع يف ال�صركة نظرا حل�صا�صية‬ ‫امل�صروع واأهميته الفنية من حيث املعدات‪ ،‬ومت تق�صيمه اإىل ‪ 3‬حزم رئي�صية و�صتتم تر�صية امل�صروع على ‪3‬‬ ‫�صركات خمتلفة‪.‬‬ ‫وعثثلثثى ال ثثرغ ثثم من‬ ‫ارتث ثفثثثاع ال ثعثثرو�ثثس‬ ‫املث ث ثثال ث ث ثيث ث ثثة ال ث ثتث ثثي‬ ‫ا�صتقبلتها ال�صركة‬ ‫لتطوير حلقول نوعا‬ ‫مثثا‪ ،‬اإل اأن اقت�صار‬ ‫الث ثع ثثرو� ثثس ع ثلثثى ‪3‬‬ ‫�صركات عاملية يجعل‬ ‫يثحثثد مثثن املناف�صة‬ ‫على امل�صروع‪.‬‬

‫�نتاج بدر �لدين من �لزيت و�لغاز‬ ‫يرتفع العلى معدالته خالل ‪ 15‬عام‬

‫�صرح املهند�س عماد حمدى رئي�س �صركة بدر‬ ‫الدين‪ ،‬اإن معدلت الإنثتثثاج احلالية تعد الأعلى‬ ‫خال ‪ 15‬عام ًا‪ ،‬حيث مت رفع اإنتاج الغاز الطبيعي‬ ‫لنحو ‪ 514‬مليون قدم مكعبة غاز يومي ًا‪ ،‬مقارنة‬ ‫بثث‪ 460‬مليون قدم خال العام املاىل املا�صى من‬ ‫مناطق المتياز التابعة ل�صل الهولندية‪.‬‬ ‫واأ�صاف اأن انتاج الزيت اخلثثام ارتفع اإىل ‪51‬‬ ‫األف برميل يومي ًا مقارن ًة بث‪ 43‬األف خال العام‬ ‫املاىل املا�صى‪.‬‬ ‫واأ�صار اىل اأن بدر الدين تعتزم الحتفاظ مبعدلت‬ ‫اإنتاجها مثثن الثغثثاز والثثزيثثت بحفر اآب ثثار تنموية‬ ‫لتعوي�س معدلت النخفا�س الطبيعى باإنتاجية‬ ‫احلقول‪ ،‬ور�صدت �صل الهولندية نحو ‪ 415‬مليون‬ ‫دولر ا�صتثمارات خثثال الثعثثام املثثاىل اجلثثارى‪،‬‬ ‫مبثنثثاطثثق ام ثت ثيثثازهثثا فثثى مث�ثصثثر‪ ،‬وذل ثثك لتنفيذ‬ ‫عمليات التنمية للحقول والبحث وال�صتك�صاف‬ ‫لثثزيثثادة مثعثثدلت اإنثتثثاج الثثزيثثت والثغثثاز الطبيعى‪.‬‬ ‫وت�صعى �صركة بدر الدين للبرول لزيادة معدلت‬ ‫الإنتاج من الغاز الطبيعى والزيت اخلام‪ ،‬لتعوي�س‬ ‫التناق�س الطبيعى للخزانات القدمية‪ ،‬وذلك عن‬ ‫طريق ا�صتخدام تكنولوجيا جديدة مثل حقن املياه‬ ‫لتدعيم �صغوط اخلزانات امل�صتنفذة‪.‬‬ ‫‪- December 2015‬‬

‫‪Petroleum Today‬‬

‫‪5‬‬


‫�ل�شعودية ل�ن ت�خ�ف��ض �ن�ت�اج�ه�ا م�ن �ل�ن�ف�ط�‬ ‫نقلت �صحيفة فاينن�صال تاميز عن خالد الفالح رئي�س جمل�س اإدارة اأرامكو ال�صعودية قوله اإن‬ ‫ال�صركة اململوكة للدولة ل تنوي خف�س اإنتاج النفط واإنه يتوقع عودة التوازن اإىل ال�صوق يف ‪.2016‬‬ ‫وقال الفالح يف مقابلة مع فاينن�صال تاميز "ال�صيء الوحيد الذي ميكن القيام به الآن هو ترك ال�صوق‬ ‫توؤدي وظيفتها‪ .‬ل مناق�صات هنا تقول اإنه ينبغي اأن نخف�س الإنتاج بعد الأمل الذي راأيناه‪".‬‬ ‫وو�صف رئي�س اأرامكو ال�صعودية �صعر املئة دولر لربميل النفط بوثيقة التاأمن املجانية التي قدمتها‬ ‫ال�صعودية و�صمحت بازدهار منتجي النفط ال�صخري ونفط املياه العميقة لأنه "كان �صمانا بانعدام‬ ‫خماطر ال�صتثمار" ح�صبما اأبلغ ال�صحيفة‪ .‬وقال الفالح اإن امل�صوؤولن يف الريا�س كانوا يدركون اأن‬ ‫تراجع اأ�صعار النفط �صيكون موؤملا ولكن مدى الأمل فاق توقعاتهم‪.‬‬

‫د�نة غاز تعلن �كت�شاف ‪ 165‬مليار‬ ‫قدم مكعب من �لغاز يف م�شر‬

‫�أوبك م�شتعدة ال�شتثمار�ت جديدة لتلبية حاجات �لطاقة �لعاملية‬

‫قال عبد اهلل البدري الأمن العام ملنظمة اأوبك اإنه على الرغم من �صبابية الروؤية احلالية فاإن اأع�صاء‬ ‫املنظمة م�صتعدون للقيام بال�صتثمارات ال�صرورية لتلبية حاجات الطاقة العاملية يف امل�صتقبل‪.‬‬ ‫واأ�صاف البدري يف ت�صريحات ن�صرها موقع منتدى الطاقة العاملي اأن موجة اإلغاء امل�صاريع وتاأجيلها‬ ‫بالقطاع هي "دليل وا�صح على اأن لتقلبات الأ�صعار تداعياتها على ال�صتثمارات واأنها قد تزرع بذور عدم‬ ‫ال�صتقرار يف امل�صتقبل‪".‬‬ ‫وقال الأمن العام للمنظمة اإنه يتوقع ارتفاع الطلب الآ�صيوي على النفط اإىل حوايل ‪ 46‬مليون برميل‬ ‫يوميا بحلول عام ‪ 2040‬اأي بزيادة نحو ‪ 16‬مليون برميل يوميا عن ‪.2015‬‬ ‫وقال اإن متطلبات ال�صتثمار املرتبطة بالنفط تقدر بنحو ع�صرة تريليونات دولر من الآن وحتى‬ ‫عام ‪2040‬‬

‫�لعر�ق يتفق مع م�شر و�الأردن على ��شتغالل فائ�ض �إنتاجه من �لزيت و�لغاز‬ ‫اأعلنت �صركة "دانة غاز"‪ ،‬عن ت�صجيلها اكت�صافات‬ ‫كبرة م ثثن الغاز يف بئري "’بل�صم‪ "2-‬و"بل�صم‪"3-‬‬ ‫�صم ثثن منطقة حق ثثوق تطوي ثثر حقل بل�ص ثثم يف دلتا‬ ‫النيل مب�صر‪.‬‬ ‫واأو�صح ثثت ال�صرك ثثة يف بيانٍ اأن التقدي ثثرات الأولية‬ ‫تُ�ص ثثر اإىل وج ثثود احتياطي ثثات موؤك ثثدة وحمتمل ثثة‬ ‫مبق ثثدار ‪ 165‬مليار قدم مكعب من الغاز‪ ،‬ما يعادل‬ ‫‪ 28‬مليون برميل من النفط املكافئ يومي ًا‪.‬‬ ‫واأ�ص ثثارت ال�صرك ثثة اإىل اأن اإنت ثثاج البئري ثثن �صيتي ثثح‬ ‫املج ثثال ملزيد من فر�س التطوي ثثر التي �صيتم العمل‬ ‫عليه ثثا خال العام ‪ ،2016‬متوقعث ث ًة بدء الإنتاج من‬ ‫حقل بل�صم قبل نهاية العام اجلاري‪.‬‬ ‫وقال ثثت ال�صرك ثثة اإن ه ثثذه النتائج ت�ص ثثكل اأول اإنتاج‬ ‫للغ ثثاز �صمن اإط ثثار العمل بربناجمه ثثا ال�صتثماري‬ ‫اجلدي ثثد واملرتبط باتفاقية زي ثثادة اإنتاج الغاز التي‬ ‫مت توقيعها مع احلكومة امل�صرية يف اأغ�صط�س‬ ‫‪4‬‬

‫‪December 2015‬‬

‫‪Petroleum Today -‬‬

‫وقع املهند�س طارق املا وزير البرول والروة املعدنية والدكتور اإبراهيم �صيف وزير الطاقة والروة املعدنية‬ ‫الأردنى وال�صيد عادل عبد املهدى وزير النفط العراقى فى العا�صمة الأردنية عمان مذكرة تفاهم لدعم‬ ‫التعاون فى جمالت البرول والغاز الطبيعى بن الدول الثاث فى �صوء توافر طاقات اإنتاجية فائ�صة من‬ ‫الزيت اخلام والغاز العراقى ولا�صتغال القت�صادي الأمثل للطاقات املتاحة و الت�صهيات اخلا�صة بنقل‬ ‫و معاجلة الغاز الطبيعى فى كل من الأردن وم�صر وحتقيق التكامل القت�صادى فى هذا املجال املهم لدعم‬ ‫خطط التنمية القت�صادية بالدول الثاث‪.‬و�صرح املهند�س طارق املا اأنه مت التفاق على اأن ت�صمل جمالت‬ ‫التعاون امل�صرك تزويد الأردن وم�صر بفائ�س الزيت اخلام والغاز الطبيعى العراقى ف�ص ًا عن ت�صدير الغاز‬ ‫الثعثثراقثثى عثثرب الأردن‬ ‫ومث ث�ث ثص ثثر مث ثثن خ ثثال‬ ‫خثثط الثثغثثاز ال ثعثثربثثى‪،‬‬ ‫كثمثثا مت التثثفثثاق على‬ ‫درا�صة الآلية املنا�صبة‬ ‫لت�صدير الزيت اخلام‬ ‫العراقى لكل من م�صر‬ ‫والأردن م ثثن خثثال‬ ‫تثنثفثيثثذ م ث� ثصثثروع خط‬ ‫اأنثثاب ثيثثب مثثن ا ُ‬ ‫حلثثديثثثثة‬ ‫اإىل العقبة‪.‬‬


‫��ول��ول‬ ‫�وي��رح��قح���ل�ق� ��لأت��أت�‬ ‫�وي���ر‬ ‫�ط��ط‬ ‫�رع�ت�ة� ت‬ ‫�رع��ة‬ ‫�ي��ش����ش�‬ ‫م�شر��ل�ع��ي�ل� �‬ ‫تتفقم��عم��عم�شر ع‬ ‫ب��يب��يب��يب��يتتفق‬ ‫آتولاآتول‬ ‫حقل‬ ‫حقل ا‬ ‫تطوير‬ ‫تطوير‬ ‫لت�صري ثثع‬ ‫لت�صري ثثع‬ ‫م�صر‬ ‫م�صر‬ ‫اتفاقاي ثاثاأولي ثمعثا مع‬ ‫اتفاقا اأول‬ ‫وقعتوقعت‬ ‫إنهااإنها‬ ‫بي‪.‬ب ثبي‪.‬ثيباثثي‬ ‫اأعلناثأعلثتن ثثت‬ ‫‪.2018‬‬ ‫‪.2018‬‬ ‫إنتاج يف‬ ‫إنتاج يف‬ ‫يبداأ ايبدلاأ ال‬ ‫الن اأن‬ ‫الن اأن‬ ‫املتوقع‬ ‫املتوقع‬ ‫من من‬ ‫الذيالذي‬ ‫للغازللغاز‬ ‫البحري‬ ‫البحري‬ ‫داديل‬ ‫داديل‬ ‫بوببوب‬ ‫بن بن‬ ‫مناق�صات‬ ‫مناق�صات‬ ‫بعدبعد‬ ‫امل�صري‬ ‫امل�صري‬ ‫البرول‬ ‫البرول‬ ‫وزيروزير‬ ‫التفاق مع‬ ‫التفاق مع‬ ‫توقيعتوقيع‬ ‫وجاءوجاء‬ ‫ال�صي�صي ‪.‬‬ ‫ال�صي�صي ‪.‬‬ ‫الفتاح‬ ‫الفتاح‬ ‫عبدعبد‬ ‫امل�صري‬ ‫امل�صري‬ ‫والرئي�س‬ ‫والرئي�س‬ ‫بي‪.‬بي‬ ‫بي‪.‬بي‬ ‫ل�صركة‬ ‫ل�صركة‬ ‫التنفيذي‬ ‫التنفيذي‬ ‫الرئي�س‬ ‫الرئي�س‬ ‫بعدبعد‬ ‫آتولاآتول‬ ‫تطوير‬ ‫تطوير ا‬ ‫�صوب‬ ‫�صوب‬ ‫�صريعا‬ ‫�صريعا‬ ‫تقدما‬ ‫تقدما‬ ‫نحقق‬ ‫نحقق‬ ‫أننااأننا‬ ‫بيان"ي�صرنا‬ ‫بيان"ي�صرنا ا‬ ‫داديل يف‬ ‫داديل يف‬ ‫وق ث وثالق ثثال‬ ‫اكت�صافه‪".‬‬ ‫اكت�صافه‪".‬‬ ‫عن عن‬ ‫العان‬ ‫العان‬ ‫من من‬ ‫أ�صهرأ�صهر‬ ‫ثمانية ا‬ ‫ثمانية ا‬ ‫من من‬ ‫اأقل اأقل‬ ‫وتقدر‬ ‫وتقدر‬ ‫مار� ثمارثس� ثثس‬ ‫ن�صبيا يف‬ ‫ن�صبيا يف‬ ‫احلثلق ثالكثلب ثالكثرب ثثر‬ ‫احلق ث‬ ‫ثافثاف‬ ‫اكت�ص ث‬ ‫اكت�ص ث‬ ‫أعلنا ثأعلثتن ثثت‬ ‫بي‪.‬ب ثبي‪.‬ثيباثثي‬ ‫كان ثكاثتن ثثت‬ ‫برميل‬ ‫برميل‬ ‫مليون‬ ‫مليون‬ ‫و‪31‬و‪31‬‬ ‫من ثالثازغ ثثاز‬ ‫من الغ‬ ‫مكعبة‬ ‫مكعبة‬ ‫قدمقدم‬ ‫ثونثثون‬ ‫تريلي‬ ‫تريلي ث‬ ‫‪1.51.5‬‬ ‫بنحوبنحو‬ ‫احتياطيات ثثه‬ ‫احتياطيات ثثه‬ ‫املكثفات‪.‬‬ ‫املكثفات‪.‬‬ ‫من من‬ ‫املتوقع‬ ‫املتوقع‬ ‫من من‬ ‫املرحلة‬ ‫املرحلة‬ ‫هذههذه‬ ‫وجناح‬ ‫وجناح‬ ‫‪. 2018‬‬ ‫‪. 2018‬‬ ‫عامعام‬ ‫إنتاج فى‬ ‫إنتاج فى‬ ‫ت�صليم ال‬ ‫ت�صليم ال‬ ‫يبداأيبداأ‬ ‫املتوقع اأن‬ ‫مرحلتن‪ :‬املتوقع اأن‬ ‫مرحلتن‪:‬‬ ‫آتولثنم ثثن‬ ‫آتولا م ث‬ ‫حلقل‬ ‫حلقل ا‬ ‫الكاملة‬ ‫الكاملة‬ ‫التنمي ثثة‬ ‫التنمي ثثة‬ ‫تتكونماثأعثالم ثثال‬ ‫تتكون اأع‬ ‫املتوقا ثأنثع اأن‬ ‫املتوق ثثع‬ ‫وم ث وثنم ثثن‬ ‫إنتاج ‪.‬‬ ‫إنتاج ‪.‬‬ ‫وزيادة ال‬ ‫وزيادة ال‬ ‫أخرىأخرى‬ ‫آبارااآبار ا‬ ‫حلفر‬ ‫حلفر ا‬ ‫إ�صافية‬ ‫إ�صافية‬ ‫ا�صتثمارات ا‬ ‫ا�صتثمارات ا‬ ‫�صخ�صخ‬ ‫إىل اإىل‬ ‫ؤدىواؤدى‬ ‫ومنومن اأن ياوأن ي‬ ‫القائمة‪،‬‬ ‫القائمة‪،‬‬ ‫التحتية‬ ‫التحتية‬ ‫بالبنية‬ ‫بالبنية‬ ‫مرتبثنط ثثن‬ ‫مرتبط ث‬ ‫تنميةتنمية‬ ‫بئر بئر‬ ‫عدد ‪2‬‬ ‫عدد ‪2‬‬ ‫من من‬ ‫ثون ثثون‬ ‫أوىل ثتتك‬ ‫أوىل تتك‬ ‫ال ال‬

‫�لطبيعي‬ ‫�لطبيعي‬ ‫�لغاز‬ ‫�لغاز‬ ‫منمن‬ ‫�مل�شانع‬ ‫�مل�شانع‬ ‫�حتياجات‬ ‫�حتياجات‬ ‫كامل‬ ‫كامل‬ ‫توفر‬ ‫توفر‬ ‫م�شر‬ ‫م�شر‬

‫و�لكويت‬ ‫و�لكويت‬ ‫بال�شعودية‬ ‫بال�شعودية‬ ‫م�شروعات‬ ‫م�شروعات‬ ‫ب�� ‪4‬ب�� ‪4‬‬ ‫تفوزتفوز‬ ‫برتوجيت‬ ‫برتوجيت‬ ‫عمان‬ ‫عمان‬ ‫و�شلطنة‬ ‫و�شلطنة‬ ‫و�الردن‬ ‫و�الردن‬

‫إيجا�س) اإن‬ ‫إيجا�س) اإن‬ ‫الطبيعي(ثاثة (ا‬ ‫الطبيعي ثثة‬ ‫للغازات‬ ‫للغازات‬ ‫القاب�ص ثثة‬ ‫القاب�ص ثثة‬ ‫امل�صرية‬ ‫امل�صرية‬ ‫ال�صركة‬ ‫ال�صركة‬ ‫ثال� ثرئيثس� ثثس‬ ‫ق ثثالق ثرئي‬ ‫بعد بعد‬ ‫الطبيعي‬ ‫الطبيعي‬ ‫الغازالغاز‬ ‫من من‬ ‫ال�صناعي‬ ‫ال�صناعي‬ ‫القطاع‬ ‫القطاع‬ ‫احتياجات‬ ‫احتياجات‬ ‫كاملكامل‬ ‫توفرآنالآن‬ ‫توفر ال‬ ‫م�ص ثثر‬ ‫م�ص ثثر‬ ‫للغاز‪.‬‬ ‫للغاز‪.‬‬ ‫القومية‬ ‫القومية‬ ‫بال�صبكة‬ ‫بال�صبكة‬ ‫وربطها‬ ‫وربطها‬ ‫للتغييز‬ ‫للتغييز‬ ‫الثانية‬ ‫الثانية‬ ‫العائمة‬ ‫العائمة‬ ‫املحطة‬ ‫املحطة‬ ‫ت�صغيل‬ ‫ت�صغيل‬ ‫أ�صمنت يف‬ ‫أ�صمنت يف‬ ‫ثبل ثواثبل وال‬ ‫وال�ص‬ ‫وال�صل ث‬ ‫واحلدي ثثد‬ ‫واحلدي ثثد‬ ‫أ�صمدة‬ ‫أ�صمدة‬ ‫ثركات ال‬ ‫ثركات ال‬ ‫كبرثنم ث�ص ثثن �ص ث‬ ‫كبر م ث‬ ‫ثدد ثثدد‬ ‫وكان ع‬ ‫وكان ع ث‬ ‫منتظم‬ ‫منتظم‬ ‫ب�صكلب�صكل‬ ‫امل�صان ثثع‬ ‫امل�صان ثثع‬ ‫إىل اإىل‬ ‫الطبيثيعاثثي‬ ‫الطبيع ث‬ ‫الغازالغاز‬ ‫ثول ثثول‬ ‫عدمص ثو�ص‬ ‫عدم و�‬ ‫من من‬ ‫ثاينثاين‬ ‫م�صي ثع ثثر يع ث‬ ‫م�ص ثثر‬ ‫البرول ا‬ ‫حتويل‬ ‫أحيان ب�ص‬ ‫بع�س ال‬ ‫بالكامل يف‬ ‫وانقطاعه‬ ‫أغلبأغلب‬ ‫البرول ا‬ ‫وزارةوزارة‬ ‫حتويل‬ ‫أحيانب ثب�صثبب ثثب‬ ‫بع�س ال‬ ‫بالكامل يف‬ ‫وانقطاعه‬ ‫ب ثثل ب ثثل‬ ‫الكهرباء‪.‬‬ ‫حمطات‬ ‫امل�صتوردة ا‬ ‫املحلية‬ ‫كميات‬ ‫الكهرباء‪.‬‬ ‫حمطات‬ ‫إىل اإىل‬ ‫امل�صتوردة‬ ‫املحلية‬ ‫الغازالغاز‬ ‫كميات‬ ‫ال�صناعي‬ ‫ال�صناعي‬ ‫"القطاع‬ ‫"القطاع‬ ‫رويرز‬ ‫رويرز‬ ‫وكالةوكالة‬ ‫ذكرت‬ ‫ذكرت‬ ‫ح�صب ما‬ ‫ح�صب ما‬ ‫البديع‬ ‫البديع‬ ‫عبدعبد‬ ‫خالدخالد‬ ‫أو�صحأو�صح‬ ‫وا وا‬ ‫الغاز‪.‬‬ ‫الغاز‪.‬‬ ‫من من‬ ‫احتياجاته‬ ‫احتياجاته‬ ‫علىعلى‬ ‫احل�صول‬ ‫احل�صول‬ ‫م�صكلة يف‬ ‫م�صكلة يف‬ ‫لديه اأي‬ ‫لديه اأي‬ ‫لي�سلي�س‬ ‫م�صر‬ ‫م�صر‬ ‫يف يف‬ ‫حمطة‬ ‫حمطة‬ ‫ت�صغيل‬ ‫ت�صغيل‬ ‫بدءبدء‬ ‫ال�صناعي مع‬ ‫ال�صناعي مع‬ ‫القطاع‬ ‫القطاع‬ ‫م�صانع‬ ‫م�صانع‬ ‫جلميع‬ ‫جلميع‬ ‫الغازالغاز‬ ‫بالفعل‬ ‫بالفعل‬ ‫وفرناوفرنا‬ ‫الثانية‪".‬‬ ‫الثانية‪".‬‬ ‫التغييز‬ ‫التغييز‬ ‫رويرز‬ ‫هاتفي ثمعثة مع‬ ‫هاتفي ثثة‬ ‫ات�صالت‬ ‫ات�صالت‬ ‫احلدي ثيفثد يف‬ ‫احلدي ثثد‬ ‫�صركات‬ ‫�صركات‬ ‫ؤويلوؤويل‬ ‫منصث ثوم�صث ث‬ ‫من م�‬ ‫عددعدد‬ ‫واأك ثواأثدك ثثد‬ ‫ال�صيمى‬ ‫ال�صيمى‬ ‫حممد‬ ‫حممد‬ ‫املهندثس� ثثس‬ ‫املهند� ث‬ ‫من من‬ ‫ل�صرحل�صرح‬ ‫املااملا‬ ‫ثارقثارق‬ ‫املهند�س ط ث‬ ‫املهند�س ط ث‬ ‫البرول‬ ‫البرول‬ ‫وزيروزير‬ ‫ا�صتم ثثع‬ ‫رويرز ا�صتم ثثع‬ ‫الثاين‪.‬‬ ‫الثاين‪.‬‬ ‫ت�صرين‬ ‫ت�صرين‬ ‫نوفمرب‬ ‫نوفمرب‬ ‫أول اأول‬ ‫من امن‬ ‫بدايةبداية‬ ‫مل�صانعهم‬ ‫مل�صانعهم‬ ‫املطلوب‬ ‫املطلوب‬ ‫الغازالغاز‬ ‫توفرتوفر‬ ‫التىالتى‬ ‫بالمارات‬ ‫بالمارات‬ ‫ال�صرك ثثة‬ ‫ال�صرك ثثة‬ ‫تنفذها‬ ‫تنفذها‬ ‫التىالتى‬ ‫ثاتثثات‬ ‫امل�صروع‬ ‫امل�صروع ث‬ ‫عن عن‬ ‫بروجيت‬ ‫بروجيت‬ ‫�صرك ثثة‬ ‫�صرك ثثة‬ ‫رئي� ثثس‬ ‫رئي� ثثس‬ ‫خطخط‬ ‫وم�صروع‬ ‫وم�صروع‬ ‫‪ 150‬كم‬ ‫‪ 150‬كم‬ ‫بطولبطول‬ ‫حب�صان‬ ‫حب�صان‬ ‫أنابيبأنابيب‬ ‫خطوط ا‬ ‫خطوط ا‬ ‫جمموعة من‬ ‫جمموعة من‬ ‫تنفيذتنفيذ‬ ‫ت�صمنت‬ ‫ت�صمنت‬ ‫‪، 30‬كم ‪،‬‬ ‫بطول كم‬ ‫بطول ‪30‬‬ ‫زايدزايد‬ ‫مينامينا‬ ‫يا�س‪/‬‬ ‫يا�س‪/‬‬ ‫خامخام‬ ‫أنابيبأنابيب‬ ‫ا ا‬ ‫ؤمتروؤمتر‬ ‫فى م‬ ‫إنبى مو‬ ‫إنبىا فى‬ ‫بروجت و‬ ‫بروجت وا‬ ‫�صركتا‬ ‫�صركتا‬ ‫جناثاح ثثا‬ ‫جناح ث‬ ‫البرول‬ ‫البرول‬ ‫وزيروزير‬ ‫افتتاح‬ ‫افتتاح‬ ‫خالخال‬ ‫ذلكذلك‬ ‫ج ثثاءج ثثاء‬ ‫‪. )2015‬‬ ‫‪. )2015‬‬ ‫أديبكأديبك‬ ‫للبرول (ا‬ ‫للبرول (ا‬ ‫الدوىل‬ ‫الدوىل‬ ‫أبوظبى‬ ‫أبوظبى‬ ‫ومعر�س ا‬ ‫ومعر�س ا‬ ‫ً‬ ‫ً‬ ‫والردن‬ ‫والردن‬ ‫ال�صعودية‬ ‫ال�صعودية‬ ‫م�صروعات فى‬ ‫م�صروعات فى‬ ‫بتنفيذ ‪3‬‬ ‫بتنفيذ ‪3‬‬ ‫ؤخرواؤخرا‬ ‫فازت م‬ ‫فازت مو‬ ‫ال�صركة‬ ‫ال�صركة‬ ‫ال�صيمى ان‬ ‫ال�صيمى ان‬ ‫وا�صاف‬ ‫وا�صاف‬ ‫ً‬ ‫ً‬ ‫بالكويت ‪.‬‬ ‫بالكويت ‪.‬‬ ‫تخزين‬ ‫تخزين‬ ‫م�صتودعات‬ ‫م�صتودعات‬ ‫إن�صاءإن�صاء‬ ‫مب�صروع ل‬ ‫مب�صروع ل‬ ‫فوزهافوزها‬ ‫ف�صاف�صعنا عن‬ ‫عمانعمان‬ ‫و�صلطنة‬ ‫و�صلطنة‬ ‫امل�صاركة فى‬ ‫امل�صاركة فى‬ ‫ت�صمثتن ثثت‬ ‫ت�صمن ث‬ ‫والتىوالتى‬ ‫م�صرم�صر‬ ‫بروجتخ ثداثلخ ثثل‬ ‫بروجت دا‬ ‫م�صروعات‬ ‫م�صروعات‬ ‫ا�صتعرثس� ثثس‬ ‫ا�صتعر� ث‬ ‫كم ثثاكم ثثا‬ ‫ً‬ ‫ً‬ ‫م�صروع‬ ‫م�صروع‬ ‫حالياحاليا‬ ‫تنفيذه ثثا‬ ‫تنفيذه ثثا‬ ‫إىل اإىل‬ ‫إ�صافة‬ ‫إ�صافة ا‬ ‫ال�صوي�‪،‬ثثسبا ‪،‬ل بال‬ ‫ال�صوي� ثثس‬ ‫قناةقناة‬ ‫حمورحمور‬ ‫تنميةتنمية‬ ‫ثاتثثات‬ ‫م�صروع‬ ‫م�صروع ث‬ ‫ً‬ ‫ً‬ ‫قيامها‬ ‫قيامها‬ ‫إىل اإىل‬ ‫م�صرا‬ ‫م�صرا ا‬ ‫إ�صماعيلية ‪،‬‬ ‫إ�صماعيلية ‪،‬‬ ‫مبنطقة ال‬ ‫مبنطقة ال‬ ‫حديدحديد‬ ‫�صكة�صكة‬ ‫ونفقونفق‬ ‫لل�صيارات‬ ‫لل�صيارات‬ ‫نفقننفقن‬ ‫حفرحفر‬ ‫أنفاق ‪.‬‬ ‫أنفاق ‪.‬‬ ‫م�صروع ال‬ ‫م�صروع ال‬ ‫لتغطية‬ ‫لتغطية‬ ‫اجلاهزة‬ ‫اجلاهزة‬ ‫اخلر�صانة‬ ‫اخلر�صانة‬ ‫إنتاجإنتاج‬ ‫م�صنع ل‬ ‫م�صنع ل‬ ‫أ�صي�سأ�صي�س‬ ‫بتا بتا‬ ‫‪20152015‬‬ ‫‪Petroleum‬‬ ‫‪Today‬‬ ‫‪Today‬‬ ‫‪- December‬‬ ‫‪- December‬‬ ‫‪3 3 Petroleum‬‬


‫�لبرتول توقع ‪� 5‬تفاقيات مع �إيني وبي بي و�إجني و�أبات�شى‬ ‫وقثثع املهند�س طثثارق املثثا وزيثثر الثبثثرول والثثروة‬ ‫املعدنية ‪ 5‬اتفاقيات برولية جديدة للبحث عن‬ ‫ال ثبثثرول وال ثغثثاز فثثى مناطق ال�صحراء الغربية‬ ‫وخليج ال�صوي�س والبحر املتو�صط ودلتا النيل مع‬ ‫�صركات عاملية با�صتثمارات حدها الأدنى حواىل‬ ‫‪ 2.2‬مليار دولر وحفر ‪ 10‬اآبار ومنح توقيع ‪544‬‬ ‫مليون دولر‪.‬‬ ‫ووف ثقثثا لبيان وزارة ال ثبثثرول الثثذي تلقت جملة‬ ‫(بثثرولثيثثم ت ثثوداى) ن�صخة منه وقثثع التفاقيات‬ ‫املهند�س حممد امل�صرى الرئي�س التنفيذى لهيئة‬ ‫البرول وال�صيد اأدريانو موجنينى املدير الإقليمى‬ ‫ل�صركة اإينى الإيطالية وال�صيد جونز فينبورد املدير‬ ‫العام ل�صركة اإجنى الفرن�صية (جاز دى فران�س)‬ ‫وال�صيد نادر زكى رئي�س �صركة بى بى م�صر وال�صيد‬

‫توم ماهر رئي�س �صركة اأبات�صى الأمريكية ‪.‬‬ ‫واأ�صار الوزير اأن التفاقيات الث ‪ 4‬الأوىل مت توقيعها‬ ‫بثثن �صركة اإيثنثثى الإيطالية و�صركائها مثثع الهيئة‬ ‫امل�صرية العامة للبرول با�صتثمارات اأكثثر من ‪2‬‬

‫مليار دولر تفعي ًا لاتفاقيات املوقعة خال املوؤمتر‬ ‫القت�صادى الثثذى عقد ب�صرم ال�صيخ فثثى مار�س‬ ‫املا�صى حيث ت�صمل التفاقية الأوىل البحث عن‬ ‫البرول والغاز فى منطقة خليج ال�صوي�س ودلتا النيل‬

‫�إن���ت���اج �ل���ب���رتول ف���ى م�����ش��ر ي�����ش��ت��ق��ر ع��ن��د ‪� 700‬ل����ف ب��رم��ي��ل ي��وم��ي��ا‬ ‫ق ثثال املهند� ثثس ط ثثارق امل ثثا وزي ثثر الب ثثرول اإن‬ ‫ال�صتك�صاف ثثات يف ال�صح ثثراء الغربية مكنت م�صر‬ ‫م ثثن احلفاظ عل ثثى اإنت ثثاج مطرد م ثثن النفط حيث‬ ‫عو�ص ثثت الكت�صافات اجلديدة ع ثثن تراجع الإنتاج‬ ‫من احلقول القدمية‪.‬‬ ‫واأ�صاف قائا ما ب ثثن ‪ 54‬اإىل ‪ 55‬باملئة من خامنا‬ ‫ياأت ثثي من ال�صحراء الغربية ومن ثم فاإنها م�صتقبل‬ ‫ومكم ثثن النفط يف م�صر‪ .‬جاء ذلك خال م�صاركة‬ ‫الوزير ملوؤمتر عن ال�صتثمار فى لندن‬ ‫وق ثثال اإن م�صت ثثوى اإنت ثثاج النف ثثط يف م�ص ثثر �صيظ ثثل‬ ‫م�صتقرا عند حوايل ‪ 700‬األف برميل يوميا يف العامن‬ ‫القادمن لكنه رمبا يزيد بعد ذلك بف�صل اآبار جديدة‪.‬‬ ‫وق ثثال زي ثثادة النتاج ق ثثد حت ثثدث يف ‪2018-2017‬‬ ‫عندما ياأتي الغاز من حقل ظهر وحقول دلتا النيل‪.‬‬ ‫املكثف ثثات �صتاأتي ومن ثم فاإنه بحل ثثول ذلك الوقت‬ ‫فاإنه (اإنتاج النفط) رمبا يكون اأكرب بع�س ال�صيء‪.‬‬ ‫‪2‬‬

‫‪December 2015‬‬

‫‪Petroleum Today -‬‬



HEAD OFFICE

Address : 9 B, 199 St., Degla, Maadi Cairo, Egypt T.+202 251 66 380 / +202 251 77 045 +2 251 99 123 / +2 251 90 702 F. +202 251 66 386 M.+2 012 8111 6565 Email : info@proservholding.com www.proservegyptgroup.com

www.proservegyptgroup.com

ALEX OFFICE:

12, st., Chamblion, Al-Azarita, Alexandria, Egypt. T.+2034856893/ +2034852033 F. +2034845754 Email: info@prolog-pst.com

SUEZ OFFICE:

3 Safwa Buildings, Second Phase Suez, Egypt T. 01000455652 Email: suez@proservholding.com


UpStream Business




Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.