Volume 27th November 2016

Page 1

Not For Sale Volume 27 November 2016

www.facebook.com/PetroleumTodayMagazine

Petroleum Today PAGE 26

THE PRE-MESSINIAN PETROLEUM SYSTEM IN THE WEST MEDITERRANEAN SEA, EGYPT

11 ‫صفحة‬

‫مستقبل صناعة الغاز‬ ‫ إلى أين ؟‬...‫فى مصر‬

CONCESSION MAP MEDITERRANEAN SEA & DELTA

15 ‫صفحة‬

.. ‫باألرقــــــــام‬ ‫تعرف على نتائج أعمال ومشروعات‬ ‫أكبر شركات اإلنتاج المصرية‬

PAGE 44

IMPORTANCE OF SURVEILLANCE FOR EVALUATING A NEW RESERVOIR TECHNOLOGY

New Products

High-Pressure Flowmeter | Gas-Detection System | Corrosion-Monitoring Transmitter | Wireline-Retrievable Well Barrier...

PETROLEUM TODAY IS THE OFFICIAL EGYPS MAGAZINE Petroleum Today Magazine will publish a distinctive edition in conjunction with EGYPS 2017 Exhibition and Conference.

Ó Special reports Ó Industry statistics Ó New products advancement Ó In depth media coverage


Triple P

MY DESIGN

( Process - Power Piping) Engineering Solutions LLC.

Triple P ( Process- Power- Piping ) Engineering Solutions LLC. is a multidisciplinary engineering contractor, established by a group of expert engineers & specialists, with mixture of international & local engineering experience in oil & gas (onshore - offshore), petrochemical, power and industrial projects. WE are a provider of Engineering, Procurement, Construction supervision (EPC), Project Management and specialists out resourcing (upon client request).

8 El-Mokhtar St., Algzaer Sq., New Maadi, Cairo. info@ppp-eng.com +202 25193255 +202 25193822 +2012 00021918

www.ppp-eng.com







‫‪Petroleum Today‬‬ ‫‪http://www.facebook.com/PetroleumTodayMagazine‬‬

‫‪Contents‬‬ ‫‪International Oil Market Challenges‬‬ ‫‪News‬‬

‫‪New Products‬‬ ‫‪The Pre-Messinian Petroleum System‬‬ ‫‪in The West Mediterranean Sea, Egypt‬‬ ‫‪Importance of Surveillance for Evaluating a‬‬ ‫‪New Reservoir Technology‬‬ ‫‪Industry At A Glance‬‬

‫‪11‬‬

‫‪2‬‬ ‫‪3‬‬ ‫‪4‬‬ ‫‪5‬‬ ‫‪15‬‬

‫‪9‬‬ ‫‪10‬‬ ‫‪20‬‬ ‫‪26‬‬ ‫‪44‬‬ ‫‪56‬‬

‫مس���تقبل صناعة الغاز فـــى مصر ‪....‬‬ ‫إلى أين ؟‬

‫المال ‪ :‬نستهدف الوصول بإنتاج الغاز إلى نحو‬ ‫‪ 5‬مليارات قدم في ‪2018-2017‬‬ ‫بي بي تحفر ‪ 21‬بئرًا بالمياه العميقة بحقول شمال‬ ‫االسكندرية عمقها ‪ 1000‬م تحت سطح الماء‬ ‫‪ 8.7‬ملي���ون ط���ن م���ن الخ���ام تكرره���ا العامرية‬ ‫واالسكندرية للبترول خالل عام‬ ‫وكالة الطاقة‪ :‬س���وق النفط قد تس���تعيد توازنها‬ ‫بوتيرة أسرع إذا التزمت أوبك بهدفها‬ ‫باألرقــــــــام ‪..‬‬ ‫تعرف على نتائج أعمال ومشروعات أكبر شركات‬ ‫االنتاج المصرية‬


‫تقديـر‬ ‫شـكر وو تقديـر‬ ‫شـكر‬

‫‪ Petroleum Today‬تتقدم بخالص الشكر والتقدير اىل السادة التايل أسمائهم ملا قدموه وما زالو يقدموه‬ ‫من إسهامات قيمة للمجلة منذ خروجها للنور عرب كتابة املقاالت العلمية وطرح الرؤى الفنية اخلاصة بتطوير‬ ‫وحتديث قطاع البرتول املصري كما يسعدنا إستقبال املزيد من املقاالت والرؤى اخلاصة بقطاع البرتول‪.‬‬

‫الرئيس الشرفى للمجلة املهندس‪ /‬أسامة كمال وزير البرتول األسبق‬ ‫املهندس‬

‫الـدكتـــور‬

‫طــاهر عبد الرحـيم‬

‫ماهر مصباح‬

‫رئيس شركة برتوسيلة‬

‫رئيس جامعة قناة السويس‬

‫اجليولوجى‬

‫الـدكتـــور‬

‫مصطفى البحر‬

‫أحمد الصباغ‬

‫الرئيس السابق لشركة عجبية للبرتول‬

‫رئيس معهد بحوث البرتول‬

‫املهندس‬

‫الـدكتـــور‬

‫حممد بيضون‬

‫عطية حممد عطية‬

‫رئيس جملس إدارة شركة برتوزيت‬

‫رئيس قسم البرتول اجلامعة الربيطانية‬

‫املهندس‬

‫الـدكتـــور‬

‫حممد حامد اجلوهري‬

‫عادل سامل‬

‫الرئيس السابق للشركة العاملية لتصنيع مهمات احلفر‬

‫أستاذ البرتول باجلامعة االمريكية‬

‫املهندس‬

‫الـدكتـــور‬

‫حممد ابراهيم‬

‫جمال القليوبى‬

‫الرئيس السابق لشركة غازتك‬

‫أستاذ البرتول باجلامعة االمريكية‬

‫املهندس‬

‫الـدكتـــور‬

‫خــالد عبــود‬

‫إسماعيل عياد‬

‫مدير تطوير األعمال العاملية (‪)MCS‬‬

‫معهد بحوث البرتول‬

‫الدكتـــور‬

‫الـدكتـــور‬

‫أحمد نــوح‬

‫إسماعيل حمجوب‬

‫أستاذ البرتول باجلامعة األمريكية‬

‫الرئيس االسبق لشركة عجيبة للبرتول‬

‫املهندس‬

‫املهندس‬

‫هانــى حــافظ‬

‫أحمد رضوان‬

‫الرئيس السابق ملبيعات شل مصر‬

‫رئيس شركة يوكس للخدمات البرتولية‬

‫اللـــــواء‬

‫املهندس‬

‫مصطفى قدرى‬

‫حممد ندى‬

‫رئيس جملس إدارة شركة مالتى ديلنج‬

‫رئيس جملس إدارة شركة (باسكو)‬

‫املهندس‬

‫الدكتـــور‬

‫أحمـد هاشــم‬

‫عالء الدين القباري‬

‫رئيس جملس إدارة شركة بروسريف‬

‫خبري الطاقة والبيئة‬

‫املهندس‬

‫املهندس‬

‫نادر خميس‬

‫شريف حسب اهلل‬

‫رئيس جملس إدارة شركة جنيوماركس‬

‫مدير العمليات رشيد للبرتول‬



Petroleum Today Chairman Mohamed Bendary Vice-Chairman Ali Ibrahim

International Oil Market Challenges

I

Executive Editor-in-Chief Magdy Bendary General Manager Hany Ibrahim Scientific Secretary Ali Afifi Editing Staff Mohamed Ahmed Magdy Rashid

nternational oil market is entering a new phase after OPEC’s last agreement in Algeria, which reducing production has been agreed in, as well as the organization sought to deal with producers from outside to stabilize production specially the agreement with Russia, the largest oil producer in the world and the question that arises now is whether these procedures are sufficient to restore oil market to balance?

Marketing Mohamed Attia Mahmoud Mabrouk Medhat Negm Magdy Ahmed Financial Management Wael Khalid Art Director Walid Fathy Art Direction Mohamed Bendary

The answer simply is NO .... OPEC’s agreement specifies reducing production by 700.000 barrels daily while international oil supply increased to 2.000.000 barrels per day, in addition to Iraq›s request for exemption from this agreement and at the same time, Iraq is seeking to increase its production strongly.

Photography Mohamed Fathy Scientific Staff Dr. Attia M. Attia Dr. Adel Salem Dr. Ahmed Z. Nouh Dr. Ismail Aiad Dr. Gamal Gouda Eng. Mahmoud A. Gobran Eng. Mohamed nada Eng. Taher Abd El Rahim Eng. Mohamed Bydoun Eng.Samir Abady Dr. Lubna Abbas Saleh

On the other side we see rock oil producers in America begin a new phase of adaptation to the current prices and they became more productive at these prices and we must point out here that Libya has sought to increase its production after the Libyan army took control of the oil fields lately. Procedures taken by OPEC can recover oil market in the short term at the level of $50 a barrel will not help return balance and stability to the market, then OPEC will take preoccupations tougher by increasing the proportion of reducing production and put pressure on Russia to reduce its output rather than fixing and that Iraq is committed also to reduce its production this is what will help market stability. Before the end, the magazine draws the attention of our dear readers, we will issue a special and distinctive issue contains many important files and issues on EGYPS Exhibition which will be held in Cairo during the month of February. And In the end, we salute you all and wish for Egypt pride and dignity.

Petroleum Today

Special thanks to all the Society of Petroleum Engineers (SPE) Mr. Hany Hafez All opinions expressed through the magazine is pertaining to their authors & don,t express the magazine›s point of view Publisher & Distribution The Egyptian Company For Marketing 29 Abd El - Aziz Gawesh st. Lebaono Sq. , Mohandeseen Giza - Egypt Tel. : +202 33050884 Mob.: 01006596350 Mob.: 01000533201 E-mail: petroleum.mag@gmail.com E-mail: mohamed@ petroleum-today.com www.petroleum-today.com th

Copyright Reserved Design and Print by:

MY DESIGN info@mydesign.com.eg www.mydesign.com.eg


Egypt News Minister of Petroleum Holds Intensive Talks on Sidelines of International Energy Forum Eng. Tarek Al-Mullah Minister of Petroleum and Mineral Wealth Holds talks with number of Ministers of Petroleum and Energy and number of International Economic Institutions on sidelines of participation at the fifteens International Energy Forum which was held in Algeria, where he met with Senior Officials Headed Roberto Boca President Administration Energy. The Minister explained during the meeting, the correctional actions which taken by the government in the field of Energy, and he showed a summary of Energy strategy until the year 2035 which has been completed includes modification of different energy sources, to make new and renewable Energy have a significant contribution. Minister of Petroleum also had talks with Eng. Khaled AlFaleh, Saudi Minister of Industry and Energy and Mineral Wealth, where it discuss the possibility of Saudi ARAMCO to use facilities from SUMED Company to store crude oil and transport through SUMED lines to Europe, and also they

discussed the possibility of additional activities for SUMED Company such as storage and trading of Diesel and Butane. The Minister also had talks with Mr. Anas Al-Saleh acting Kuwaiti Minister of Petroleum, and Mr. Eulogio Antonio Del Pino Dias Venzuelan Minister of Energy and the Minister had an expanded meeting with workers in PETROJET Company branch in Algeria.

Kuwait Waives About Arbitration Proceedings Against EGAS And GASCO

According to Egypt Policies currently toward investment encouragement and work on ending investment dispute through settling it friendly between parties and in addition to the deep

12 Petroleum Today - November

2016

close cooperation relations between Egypt and Kuwait. Eng. Tarek Al-Mulla Petroleum and Mineral resources Minister witnessed in the Ministry of Petroleum headquarters the signature of settlement dispute emerging agreement between Kuwait Holding Company and Egyptian Holding Natural Gas Company «EGAS» and Egyptian Natural Gases Company «GASCO» Inc. and Commercial Petroleum Services Company «PETROTRADE» Inc. and Alexandria Fertilizer Company. According to this Kuwait waives about Arbitration Proceedings against Egypt in front of International Centre for Settlement of Investment Disputes related to World Bank «ICSID» under committee of settlement disputes decades investment headed by Council of Ministers.


NewEgypt Petroleum Discoveries BPEGPC: agrees38with to speed of theDuring 2015 / 2016 development of Atulfield

Egypt fines European oil tanker 58 million pounds for having a broken oil pipeline in Suez

Eng. Tarek Al-Hadidi Executive for crude oil and 14 discoveries for Suez in Court of First Instance, headed by Judge Mohamed President of General Petroleum natural gas to contribute petroleum YahyaRafat Fined, foreign oil tanker «Nassau Energy», Corporation, shows from his side the and gas reserves. The total average and owned partners from European countries, and most important business results of the of petroleum production was by671 flying the flag of Liberia the amount of 58.00085 million fiscal year 2015 / 2016 pointing that thousand oil and condensates barrels thousand the corporation’s program targeted daily during the year, where pounds, western for the benefit of the fishing sector in the Red Sea, and that after having a broken oil pipeline to strengthen petroleum production desert contributed around 56% of it. Suez in thesea and secure the market needs from He noted that the incorporation haswater at Zeiteyatport and polluting the sea water, petroleum products and natural gas. signed eight agreements to equivalent search to 4 thousand barrels of crude oil. contributed in petroleum agreementsoil number Theitsoilproduction tanker during its pumping in a Al-Hadidi said that the corporation had for oil and gas and during the last two years to be pipeline to the Red Sea, broke the line and caused the24 38 petroleum discoveries with investments of $2.2 billion in BPachieved announced that it has new signed a preliminary agreement leak 4 thousand barrels of crude oil into the sea water, during wherethe 24development discoveries of addition to 7 negotiated projects which conventions. with Egyptthetoyear, accelerate Atull marine contamination of vast tracts of the Red Sea and the Gulf of gas field, which is now expected to begin production in 2018. Suez water, and the destruction of the naval environment The signing of the agreement with the Egyptian Minister of Energy Egypt Chooses GLENCORE, TRAFIGURA, and BP Al-Mulla: Foreign Petroleum and the excuse and fish in polluted areas.Companies Petroleum discussions between to supplyafter (LNG) Gas in A TenderBob Dudley, CEO of Investments in Egypt $6.6 BillionininPort 2015 - 2016 The Court notified the security authorities Tawfiq BP and Egyptian President Abdel Fattah al-Sisi. Port Suez with the contents of the decision that is to Dudley said in asources statement: are pleased we arethat Egypt Commercial told«We Reuters news that agency Egyptian Petroleum Minister Eng. Tarek Alconserve the oil tanker «Nassauenergy» in the draft of making rapid progress towards the development Atull to supply Mulla said that foreign Petroleum Companies chooses GLENCORE, TRAFIGURA and BP of Energy the Suezport of, after in encounter two days before after lessliquefied than eight months the announcement of the investments Egypt is exist amounted to $6.6 billion three natural gasfrom shipments after a tender. the decision in the draft of the verdict ago after leaving discovery.» despite the financial 2015 2016 international Traders said that GLENCORE will be handed over October’s Egypt after the disaster thatdrop caused, pretext is were to BPshipment was announced relatively largewill fieldbe discovery March petroleum prices whilethe investments and TRAFIGURA handedinover November’s reconciliation with the EEAA . and reserves estimated about 1.5 trillion cubic feet of gas $7.5 billion in 2014 - 2015. shipment while BP and 31 million barrels of condensation. Al-Mulla said at press statements «Although Energy –a expatriate new It is expected that the full development work of the field Atull international petroleum prices drop during the relatively on LNG gas consists of two stages: the first consists of 2 developedwells past year, our foreigners partners spent $6.6 tradewill be handed over linked to the existing infrastructure, production is expected billion on exploration and development in shipment, A to begin delivered in 2018.Itis expected the December’s success of this Egypt». spokesman of BP Energy stage to lead to pumping additional investments for drilling Egypt targets foreign petroleum companies that his company won other wells and increase production. investments to reach $12.1 billion during the The Paranoiac Petroleum company will December’s (one of the current financial year 2016 - 2017. shipment. participating companies the Bp and the petroleum sector) implement and operateAtull development operations.

Egypt Implemented Seven Petrochemical Projects with Investments $7.5 Billion

Minister of Petroleum explained that Petroleum sector Egypt provides a full need of factories of natural gasper day

succeed at implementation of 7 projects in Suez and Chairman of the Egyptian Holding Company for Natural Gas (EGAS) said that Port Said and Damietta and Alexandria governorates at Egypt nowwith provide the national petrochemical plan framework, totalthe full needs of the industrial sector of natural gas after run the international second floating investments around $7.5 billion through andstation and linked to the national gas net. A large of fertilizers, iron and steel and cement companies in Egypt national companies, and annual revenues aboutnumber $3 billion from a lack of natural gas regular reaching but also fully snapped in some with productivity capacity 5 million tonssuffers from petrochemical cases to imports the Ministry of Petroleum conversion most local andimported gas products contributed in local market needs anddue bring and provide dollarized source, as well asquantities providinginto newelectric job power stations. Khalid Abdul-Badiexplained, according to Reuters news agency, «he said the opportunities which acts positively on Egyptian economic. industrial sector in Egypt does not have any trouble getting its needs of gas. This was during Minister’s presidency to work association Indeed we have provided to all industrial sector factories with starting the second Alngez station.» of Egyptian Holding gas Petrochemicals Company to adopt Egypt hired results two ships forfiscal Regasyear this2015 year /to2016. provide the needs of gas forelectricity sector and factories. business of the A number of steel company›s officials inof telephone contact with Reuters to provide the required gas for their factories from Eng. Mohammad Saafan President Egyptian Holding thePetrochemicals beginning of theCompany first of November. showed the projects present secure its needs from crude materials and commitment President Abdel Fattah Al-Sisi said earlierand this month factories in Egypt willsecurity, not face any problems in getting its gas situation which was implemented, followthat up the and to professional safety and health to guarantee by development the end of November. procedures and companies list update and continuation of security operating.

Petroleum Today - November

2016

13


Arab News Saudi Arabia ARAMCO Granted Long Term Contract For A Company in Abu Dhabi

Libyan Oil Production Rises to Top level in 3 years By December It is expected that Libyan Oil production rises to top level in three years by next December according to rerunning fields and reopening of main ports after five years of armed conflicts which caused breakdown supplies and weak sales. President of Administration board of Libyan National Oil enterprise «Mustafa Sona Allah» said in a statement in Istanbul during Global Energy Forum that Libyan National Production is currently 540 thousand barrels daily and it will reach 900 thousand barrels daily by the end of this year which will be the top production level since June 2013.

Saudi Arabia National Giant Petroleum Company ARAMCO said that it laid a long term contract on National Construction Petroleum Company in Abu Dhabi to work in ARAMCO’s Navy projects. In a statement except from finance value or work details ARAMCO said that Construction Petroleum Company will participate in building Oil and Gas Platforms and Pipelines and Electricity cables and other infrastructure. Contract duration is six years and extendable to 12 years and it is the fifth contract signed by ARAMCO as in last June it signed four similar contracts with other engineering companies.

Libya - Larger Oil Reserves in Africa –increased its production of crude oil after the National Oil Enterprise reached an agreement with Army Leader «Khalifa Hfter» to control on Oil ports. According to that a resumption of supplies in ports including «Ras Lanuf» and «Seder» and «Zekana» to close Libya from its production before 2011 when it was 1.6 million barrels daily.

Kuwait Signs Drilling and Exploration Contracts worth $2.5 Billion in 2016

Kuwait expanded its petroleum drilling and exploration works enormous and sophisticated during 2016, where the company signed decades to drilling wells and supply drilling platforms works at many main oil sites with 750

14 Petroleum Today - November

2016

million Dinars which is equivalent to 2.5 billion Dollars. The value of these contracts is considered the biggest at the history of Kuwait Oil Company since years although drop in exploration and in oil production Countries after the Petroleum prices drop almost before year and a half, as drilling exploration activities is the correct evaluation for Oil exploration and production operations evolution.

It aims to cover drilling programs which the Company intends to implement during the plan Strategy for the upcoming years to increase drilling rigs 90 to 150 towers early in 2017 to raise the drilling rates to reach two thousand wells by 2020, stressing that drilling operations and support services done by the company jointly with contractors will strengthen work and final production to reach targets set during next years.



International News Russia and Turkey Signed an Agreement to Build TurkStream Gas Pipeline Turkey and Russia signed a bilaterally agreement to construct Gas transfer pipeline TurkStream which will be under sea, the agreement was signed at Istanbul in the presence of Russian President Vladimir Putin and Turkish President Recep Tayyip Erdoğan, the agreement is to build two pipelines under black sea, precedent reports said that the capacity of every line will amount to 15.75 billion cubic meter. Turkish President stressed that it will be acceleration in the natural gas pipeline project TurkStream and plans to build Nuclear Station by Russia in Turkey with returning back relations between the two countries. Rosatom won in 2013 contract worth $20 billion to construct four reactors which was to become the first Nuclear Station in Turkey but building stopped after Turkey shoot down a Russian Fighter near Syrian boarders last year.

OPEC Production Rises Top Level at Eight Years (OPEC) announced to increase Oil Production at September to top level at least in eight years and it raised its supply forecast growth in 2017 which indicates larger surplus at market next year despite the Organization’s agreement on scale down its production. OPEC said at its monthly report that it pumped 33.39 million barrel Per day during last September according to data compiled by the organization from secondary resources which an increase of 220 thousand barrel daily than August. OPEC said at its report «reserves are on top levels at all. Although these high levels decreased a little lat weeks». The report showed that supplies increase at September came most from Libya and Nigeria which resume production after disturbance as well as from Iraq whichwondered about accuracy numbers by OPEC’s secondary resources.

Energy Agency: Petroleum Market May Recover Pace Balance Faster if OPEC Committed Its Objective International Energy Agency said that Global Petroleum Supply may become suitable with demand more faster if OPEC agreed with Russia on big and accurate reduce in production but it is not clear yet when it might happen. The agency said in its report in August that it expects global demand growth by 1.2 million barrel daily next year to keep on forecast without a change from previous month but it reduced its estimated growth in 2016 by 40 thousand barrels daily to 1.2 million barrels daily from about 1.3 million barrels daily last month. The Agency said «Even at existence signs priority on stocks began shrinking where our expectations for display and demand may remain replete about supply during the first half of next year. (But) if OPEC committed its new objective so market will recover its balance more faster.

16 Petroleum Today - November

2016


Weld – Tech Company Denmark Ó Clamps for pipes and flanges Ó Purging equipments Wicksteed ( U.K ) Ó Tube Expanders For Condensers And Heat Exchangers Ó Torque Control Drive Equipment Ó Tube Pulling / Removal Equipment

Mag – Tron ( U.K ) Ó Magnetic Drills and Cutters.

On-site Cold Cutting and Beveling for All Pipes.

Protem ( France ) Ó Cold cutting and Beveling Machines. Ó Beveling Machines only. Ó Flange Facing Machines.

We are J.M.S for Trade and Engineering and we are authorized Distributors for the following companies

Hi- Force ( UK ): Ó Hydraulic Cylinders and Pumps. Ó Manual and Hydraulic Torque Wrenches. Ó Hydro test Pumps. Ó Bolt tensioner. Ó Hydraulic tools as (Flange Spreader – Nut splitter – Hydraulic Pullers – Cable crimping tools). On-site Bolting Services : Ó Manual Bolt Torquing. Ó Hydraulic Bolt Torquing. Ó Hydraulic Bolt Tensioning.

J.M.S for Trade & Engineering 4 El Awhady St., From El Makrizy St., Above Qatar National Bank, Manshiet El Bakry - Heliopolis, Cairo 11341 - Egypt Fax : +202 24520288 - 24511934 Mobile : +2 012 7444 5806


Corporation News PETROBEL: Drilling and Completion of 20 Wells and Installation of 20 Deep Wells Under Water Surface in the Giant Field Zohr Engineer Atef Hassan, President of PETROBEL Company said that Zohr field is the largest gas discovery achieved in Egypt in the area of Mediterranean Sea sicne search operations for Oil and gas started which was achieved according to fruitful cooperation between Petroleum sector and ENI of Italy, reserves estimated about 30 trillion cubic feet of gas will be allocated to meet local market needs from natural gas, its investment will be between $12 to $16 Billion on projects lifetime, it is planned for early production from the project according to development plan by end of 2017 at a rate of one billion cubic foot daily and production will mount up to reach its peak rates estimated about 7.2 billion cubic feet daily by the end of 2019. He added that the project includes drilling and completion of 20 wells and installation of 20 well head at the sea bed, in addition to equipment measurement and protection and control and installation network of transferring gases from wells to complexes wells then to production facilities stations, as well as design and supply and manufacturing platform control Zohr field which it will be equipped with control for wells, in addition to installation of three control cables from Zohr platform to warheads wells to control wells and production.

BP Drills 21 Wells in Deep Water Fields in North of Alexandria at Depth of 1000m. Below the Water Surface Eng . Hesham Mekkawy CEO of BP announced that the execution stages in North Alexandria fields project will be latest technologies wells above the bottom of the sea through drilling and completion of 21 wells in deep water which reaches depth to 1000 meters under water surface and requalifying Rasheed field to address gases in Giza – Fayoum field, and the establishment of new station to address gases in Raven field, and the establishment of pipeline with 35 kilometers length to relate Libra and Taurus fields with the production of Borollos fields, in addition to build up pipeline at a length of 70 kilometers meter to transfer gases from Giza, Fayoum and Raven fields by the facilities of Rasheed and East Rasheed fields. He added that the total investment cost for the project is about $11 billion and that there is an acceleration in the time of production from Libra and Taurus fields in the third quarter from next year to produce around 600 million feet daily, and project’s production rises gradually up 1,250 million cubic feet daily in 2019 / 2020 and ranges 20 - 25 thousand barrels daily from condensates.

18 Petroleum Today - November

2016


TOTAL Seeking To Invest $200 million in Egypt During 5 years Egyptian prime minister said that officials from French Oil and Gas TOTAL confirmed during interview with President Minister Sherif Ismail that the company will have $200 million new investments during next five years. Mittleman, Vice President of TOTAL Company announced that TOTAL is currently after acquisitions on fuel activities from SHELL and CHEVRON companies, it became the main energy supplier in Egyptian Oil and Energy market, where the company has achieved last year 2015 sales 3.6 million tons from Oil Products covering 11% of the fuel market needs in addition to 7% in engines oils market. TOTAL is working in Egypt in car supply services and fuel warehouses and manufacturing and mobilize Oils mineral engines and planes supply services beside petroleum explorations activity.

Extended life of oil and gas wells

MCS Subsea 3D Measuring Technology Innovation Award

Gas and oil wells that are nearly depleted are often abandoned, even when considerable amounts could still be extracted. The reason is that the remaining oil and gas can no longer be recovered efficiently and cost-effectively with conventional methods. A Wellhead Compression unit from HOERBIGER allows mature fields to continue to produce. Wellhead Compression (WHC) extends the life of oil and gas wells, dramatically boosting their production output. HOERBIGER WHC units have an availability of at least 95 percent, even under poor operating conditions, and generally achieve levels as high as 99 percent, ensuring continuous production.

It is an honor that MCS was awarded Abu Dhabi Marine Operating Company (ADMAOPCO)Innovation Award for its latest technology Photo Realistic 3D Cloud of points (PRC) and advanced Inspection by ROV on Offshore Structure. ADMA-OPCO took the initiative to be the 1st Company in the world adapting MCS new technology. MCS CEO - Wael Bakr announced that this technology will be a turn point in subsea measurements industry as it allows the operators to visualize precisely their subsea infrastructure in both shallow and deep waters with the ability to measure to a fabrication accuracy with the same simplicity as if we are working onshore. MCSPhoto Realistic 3D Cloud of points (PRC) been successfully utilized and deployed in several other international projects covering MiddleEast, Gulf area, FarEast and Australia

Lubemaster expanding in partnership with Chevron Corporation , Chevron Corporation is one of the world s largest integrated energy giants doing business in more than 180 countries worldwide. Headquartered in California – USA, it is also a leading global manufacturer for premium lubricants across the globe. Under the partnership umbrella, Lubemaster expand its investment with Chevron distributing and marketing industrial lubricant oils, greases, and specialty products in Egypt and offers lubricant solutions for industrial applications. The executive director Eng . Yahia Makrm said «The combined resources and technology of Lubemaster and its partner company Chevron, produce a powerful Lubricants team with a huge competitive advantage» «Lubemaster ‹synergy of its team and the unparalleled expertise in innovative technology solutions offers a unique value proposition to customers that differentiates the Company from the rest» «Our knowledge of local business environments and our world-class experience provides local know-how on a global scale».

Petroleum Today - November

2016

19




New Products High-Pressure Flowmeter

Fig. 1— Bell Technologies’ Multiphase Toruswedge high-pressure flowmeter.

Bell Technologies introduced the Multi¬phase Toruswedge (MPT), a high-¬pressure flowmeter for safely measuring multiphase volumetric flow rates for wellbore processes. The meter is designed to provide high-accuracy volumetric flow measurement on drilling rigs and can be used for multiple applications ranging from low to extremely high pressure (Fig. 1). The MPT is particularly suited to mud flow where fluid is injected into the well through high-pressure and -volume injection pumps. Mud is then returned to the surface through the bell nipple, where it flows through the shaker for cleaning before being recirculated back to the wellbore. The product handles demanding applications that require robust performance combined with low maintenance. The MPT will allow operators to confidently monitor mud flow both in and out of the well and ensure long-term asset reliability as well as safe rig operation. By monitoring the complete mud-flow process, the rig operator will be able to control the drilling process safely and provide a more economically priced wellbore. The Bell Technologies MPT mud flowmeter is a primary flow element with a maximum pressure rating of 20,000 psi. Ó For additional information, visit www.belltechnologiesllc.com.

22 Petroleum Today - November

2016


Gas-Detection System Chemical-Injection System Remote Automation (RAM) productsthe allow National Oilwell Monitoring Varco (NOV) introduced Gas Watch EX upstream and midstream operations increase chemicalstandalone gas-detection system.to The Gas Watch EX system liberates injection precision andtrapped efficiency while reducingdrilling chemical formation gases in the returning fluid, identifies and gases overhead costs. RAM uses patent-pending, virtualthat can be a danger to drilling personnel, and delivers gasflowmetering and stroke-¬counting achieve analysis capabilities. Patented technology technologytoand proprietary filters precise dosage delivery.dual RAM’s IPC2000 cellular enable the system’s infrared (IR) sensors to pump read only formation controller uses this technology toreadings sense each compression gases, which eliminates false caused by mud additives (Fig. stroke delivered by the pump without additional 2). This allows the system to distinguish lightsensors, from heavy gas to be cables, (Fig. offers majorcharacterization. savings on usedorincomponents gas ratios that aid2).inIthydrocarbon The Gas equipment costssystem and includes PROFLOfalse proportional Watch EX also eliminates high gasflowreadings typically control technology. allows thesystem option can of setting found in IR totalPROFLO gas systems. The include a hydrogen chemical-delivery targets on the basis of conventional sulfide sensor for added safety. Maintenance on the Gas Watch quart-¬per-day or in parts with per million (PPM). EX system parameters, is minimal compared most gas-detection systems. TheFlexible PPM mode permits a simple fromapplications. a mounting options enableinput use signal in various The product flowmeter to automatically modulate chemical Gas Watch EX system can be used as the primary or backup gasdosage on thesystem, basis of the user-set PPM concentration detection serving as an analytical tool and a safety system. level. All RAM ¬cellularand satellite-based controllers The system offers additional value to the operator by allowing delay feature tank monitoring, autonomous Fig. 2— NOV’s Gas Watch EX gas-detection system of theintegrated onset of mud-logging serviceslocal or replacement of those services pump and tank management, comprehensive battery with remote logging services. management, temperature-controlled injection, Fig. 2— Remote Automation Monitoring’s IPC2000 cellular pump controller. Ó For additional information, visitmethanol www.nationaloilwellvarco.com. and security alerts. They also offer comprehensive scheduled/polled reporting through text, a mobile web page, or RAM’s FLEET web-based human/machine interface. Corrosion-Monitoring Transmitter Ó For additional information, visit www.remoteautomationmonitoring.com.. The new Cosasco ER 300 Series

Magnetic Detector Wireless Thickness Transmitter allows easy,

affordable latest-generation upgrade of storageGOWell’s magnetic-thicknesstank-corrosion to fully of evaluating detector (MTD) monitors tool is capable automated data-collection systems. quantitative thickness measurements of three concentric Corrosion in instrument chemical combines storage a high-power pipes (Fig. 3). The tanks occurs both internally, fromelectronics, and transmitter, improved ¬signal/noise wateracquisition. gathering This at the fullycorrosive configurable flexible approach bottom of therange tank, of andevaluations externally, under different allows a wide from water seeping under the tank conditions and conveyance systems, including logging in large to 18⅝ in.),located fast logging of single floor.pipes With(uptank farms pipes, chromeand or alloy-pipe evaluation, thick casings, near suburban environmentally and sensitive memory-optimized logging. Internally, the tool areas, leakage of a tank’s acquires up tocaused 300 channels of pulsed-eddy-current contents by corrosion transient that can beimpact transmitted in real time could decay have disastrous on to surface or stored downhole. Real-time logging is local ecosystems. To ensure the possible either in combination below any of GOWell’s effectiveness of anticorrosionFig. 3— Cosasco’s ER 300 Series Wireless Transmitter allows easy and affordable upgrade of existing Multi-Finger storage-tank-corrosion monitors. treatment systems, Caliper storage(MFC) tanks tools or when combined with internal PegasusStar, -GOWell’s high-speed require both and external corrosion monitoring. Older tank farms often have inadequate monitoring systems with telemetry system.data Memory acquisition is supported by and access. The ER 300 transmitter uses wireless communication to no integrated management, limiting data quality GOWell’s memory logging system. When run with their allow integration with existing protocols, with no cabling costs. The transmitter can collect data from multiple monitors Pegasus¬Star platform, thecreate MTDa iscomprehensive fully combinable across a tank farm to monitoring system that ensures the integrity of storage tanks (Fig. 3). Fig. 3— GOWell’s MTD tool can evaluate quantitative thickness withWireless the MFCcommunication tool and their Digital-Radial-Bond measurements three concentric pipes. removes the need to Tool, visit the site to record data, savingoftravel time and providing the most upallowing a comprehensive evaluation of well integrity, to-date corrosion data. providing accurate thickness information for multiple pipe strings as well as the cement-bond quality. Ó For additional information, visit www.cosasco.com. Ó For additional information, visit www.gowellpetro.com.

Petroleum Today - November

2016

23


Wireline-Retrievable Well Barrier

Fig. 4_The CAPSTONE well barrier from Baker Hughes, designed to minimize NPT and ensure smooth retrieval operations.

Baker Hughes’ CAPSTONE wireline-retrievable well barrier provides an economical solution for temporary wellbore isolation while minimizing nonproductive time (NPT) and ensuring smooth retrieval operations (Fig. 4). The well barrier helps to ensure that the well has been isolated and the integrity of the wellbore is protected. Whether used for temporary suspension, well servicing, or surface-equipment repair, the barrier confirms total well control to enable safe operations and protect the environment. The well barrier offers field-¬proven components, including an equalizing valve that uses a telescoping retrieving head to eliminate premature unsetting, and it features an advanced design for entry and retrieval operations, providing increased reliability and reduced NPT. The barrier is compatible with most industry-¬standard tools, to enable flexibility and reduce operating costs. Recently, an operator’s North Sea team deployed two CAPSTONE barriers into the well, at 4,330 and 520 ft, respectively. The barriers reliably isolated the wellbore, providing a gas-tight barrier to enable safe workover operations. The shallow-set barrier was retrieved after only 4 days without any issues. After the operator realized the need to cut and pull the casing as part of their workover, the deep-set barrier was later pulled out of hole with the tubing. Ó For additional information, visit www.bakerhughes.com.

Integrated Drilling-Performance Solution The Weatherford Drilling Advisor Solution combines predrilling historical well analysis, real-time dynamic modeling, and post-drilling knowledge management to deliver improved drilling performance and hazard avoidance. During the predrilling phase, advisors take a scientific approach to early prediction of well behavior by analyzing historical data. The advisors then determine the best-fit technologies, practices, and safe operational limits to create a robust drilling plan. During drilling ¬operations, the advisors perform realtime dynamic modeling, which enables early prediction of well behavior and reduces nonproductive time. The Weatherford proprietary software platform enables integration across the drilling process to deliver drilling optimization, wellbore stability, and drilling-hazard avoidance. The postdrilling-knowledge--management process captures the lessons learned in an end-of-well report that outlines key performance indicators, details opportunities for improvement, and makes recommendations for future projects. The Drilling Advisor Solution provides expertise that reduces uncertainty, improves safety and efficiency, and aligns with budgetary and production goals. Ó For additional information, visit www.weatherford.com/advisor.

Wellhead Outlets for Low-Cost Operation AnTech has introduced three new products within its Wellhead Outlet range. With the demand for more data and distributed measurements, there has been growth in the use of fiber-optic cables for permanent monitoring. These solutions are only as good as the connections at surface, and AnTech’s Type FC outlet has been designed to meet this requirement. In order to meet a lower price point for customers, AnTech has reviewed materials and manufacturing processes to keep costs to a minimum. As a result, the new Type FC outlet incorporates a 3D printed smart system for handling and storing up to four fibers. AnTech has also launched two further electrical outlets, Types CB and CC. Each adaptation has been carefully designed to suit various working environments, including pressures ranging from 10,000 to 15,000 psi and temperatures from -60 to +160°C, while meeting tightening budget constraints. The three new wellhead outlets do not compromise on specification and provide customers with a solution in a challenging market. Ó For additional information, visit www.antech.co.uk.

24 Petroleum Today - November

2016


Intelligent-Monitoring System Xodus Group’s intelligent-monitoring capability provides tools for operations support to assist with asset surveillance. The capability provides new levels of visibility of operational data from subsurface, subsea, and topside instrumentation to all levels of an organization (Fig. 5). It combines an asset’s data history with specialist engineering calculations to create intelligent process monitors and powerful visualization tools. The process Fig. 5— Xodus Group’s intelligent-monitoring capability provides new levels of visibility of monitors help operators to rapidly identify operational data. when systems are operating outside an optimal range, which may be governed by alarms or specified by a surveillance engineer. This allows operators to respond proactively to changes in system operation through predictive monitoring. Some of the tools already created include virtual meters to monitor drift in calibrated instrumentation, prediction and visibility of heat-exchanger fouling, compressor- and pump-performance monitoring, and subsea-production monitoring. Other tools include high-level overview and management dashboards, which are displayed permanently in client offices for personnel to view the current and recent health of the asset. The tools are created remotely and are seamlessly implemented online into the client’s system for immediate access to all users. These solutions are relatively low-cost, with short lead times and swift returns on investment. Ó For additional information, visit www.xodusgroup.com.

ROYAL MARINE SERVICES Royal, was created In Egypt (Alexandria) since 2007, our company gained recognition for being a reliable marine services company providing top quality services to the leading shipping companies, owners and clients. Our service extends to almost all ports of Egypt. We are specialized in supplying marine lubricants, and we have a sole agency now for marine lubricants of OILYBIA (Ex. name TAMOIL) , We can provide it to any vessel passing by any port of Egypt. We are providing lubricants with a high quality and competitive price, we are able of providing it locally and overseas, and we serve our clients with some extra services in addition to providing the lubricants (as technical support, Oil analysis) We guarantee 24 hours non stop service, outstanding quality and efficient delivery. The base of our business is the excellence of our service. With a presence in several African ports, OiLibya offers products and services for the shipping industry. Different types of lubricants specially produced for marine use are available to meet the needs in this sector. The OiLibya products and services available for the shipping industry are extensive and range from small local fishing vessels to large international cargoes travelling all over the world. In Africa OiLibya is a leader in providing fuel and lubricants to the shipping industry coupled with a high quality service.

Address: 22 ElGhorfa Eltogareya St., Elraml Station - Alexandria Tel/Fax: 002 03 4861822 Mob. no.: 01096418696 - 01277199861 email: info@royalmarineser.com

Contact Person : Ms. Venis Tharwat


Trouble-Zone Drilling Solution Operators are looking to extend the profitable life of their fields, which often requires drilling through problematic environments, or trouble zones. To enable safe, efficient, and economical drilling through these zones, Baker Hughes introduced the DrillThru solution, which offers a proven, comprehensive work flow to overcome the challenges associated with trouble zones. The work-flow process starts with gathering and Fig. 6— Baker Hughes’ DrillThru solution offers a customized contextualizing reservoir and field approach to overcoming trouble-zone challenges. data so that all potential threats are identified and interpreted through geomechanical models (Fig. 6). The service com¬pany then designs a customized well path and a detailed plan to construct the well through any potential trouble zones. Each solution prescribes the most-appropriate remedies for addressing identified trouble zones. In one recent application, the com¬pany designed and implemented a solution in the North Sea for an operator that needed to accommodate an un¬stable shale formation protruding into the pay zone. The service company developed a solution that could capture additional reserves without risking wellbore integrity. A steerable drilling liner was combined with careful fluid management to directionally drill through the unstable shale. Drilling and laying liner simultaneously prevented the wellbore from collapsing, and enabled access to previously bypassed reserves. This solution delivered an additional 758 ft of pay-zone contact, boosting recovery by an estimated 350,000 bbl of oil. Ó For additional information, visit www.bakerhughes.com.

Artificial-Lift System

Fig. 7— The HEAL System from Production Plus Energy Services.

26 Petroleum Today - November

2016

A new technology from Production Plus Energy Services offers a solution for operators to reduce lifting costs and increase production in horizontal wells. The Horizontal Enhanced Artificial Lift System, or HEAL System, complements existing ¬artificial-lift systems, settling the messiness of horizontal flow, reducing fluid density, and lifting fluids higher in the vertical section where a pump can operate most reliably. Sluggy, inconsistent flow in horizontal wells means poor run time, excessive workover costs, and inadequate drawdown. The HEAL System delivers smooth flow to the pump that is placed shallower in the vertical section, to allow the pump to work more reliably and efficiently, ultimately reducing operating and capital costs while enhancing production (Fig. 7). Suitable for both existing and new wells, HEAL allows natural flow during the early part of the life cycle, and then integrates, with minimal expense, into ¬artificial-lift systems once they are required. For some operations, the HEAL System can fill the lifting gap and eliminate the need for intermediate lift systems such as gas lift. Operators who have installed the HEAL System have experienced a material improvement in production and reserves, on the order of 30% or more, over the remaining life of the well. Ó For additional information, visit www.pdnplus.com.


OFFICE M A G A Z I N E

MY DESIGN

DEVELOP YOUR BUSINESS

OFFICE MAGAZINE is the first magazine in Egypt & the Middle East region for offices, companies & banks preparations.

Office Buildings

Interior Design

Office Furniture Office Technology

Services

Suppliers

Telecommunications

29th Abd El - Aziz Gawesh St. - Lebaonon Sq., Mohandeseen - Giza - Egypt T / F : +20233050884 Mob. : +201006596350 E-mail : office.magazine1@gmail.com

Security


The Pre-Messinian Petroleum System in The West Mediterranean Sea, Egypt By

MORSHEDY, A. M. - FOUAD, A.S., HOSSAM, A., and OYSTEN, L.

A

BSTRACT

The study area is located in the western part of Egypt’s Mediterranean Sea. This frontier area covers approximately 80,000 sq.km and includes the continental shelf, the Herodotus Basin, Nile Delta Basin and subduction zone of the Mediterranean Ridge Basin. The aim of this study is to evaluate the region which is partly covered in the United States Geological Survey (USGS) report on the Nile Delta basin that indicated the estimated hydrocarbon potential in the Egyptian Nile Delta to be about 223 TCF, 1.8 MMBO and 6 MMBNGL. The new evaluation will be achieved by studying the potential of this area which includes the geological setting, the petroleum system(s) and the geochemical modeling of the available data. The evaluation of the geological setting includes the depositional environment, formation types and main tectonic structures. The Petroleum system includes the identification of reservoirs, source, traps and seal efficiency. The Pre-Messinian Plays are represented by a series of turbidity channel complexes with associated lobe system(s) and these sandstone reservoirs show strong amplitude anomalies on the seismic. Discussion of modeling will include investigations of geochemical analysis model and burial/thermal history for the Kiwi-1 well from 2011, which reached to Oligocene and penetrated a thick body of Messinian salt also Sidi Barrani-1 well, which reached to Upper Carboniferous. New geophysical data acquisition will be crucial for an assessment of the area. The PGS GeoStreamer acquisition solution would provide broadband seismic data to secure superior imaging of both pre- and post-salt targets. The broadband data would allow a better

28 Petroleum Today - November

2016

demultiple solution and enable optimum velocity models to be established to derive the best possible pre-stack depth migrated images. The new data together with a rejuvenation of the legacy data after reprocessing would provide an optimum starting point for interpretation to increase the understanding of the hydrocarbon potential of the Mediterranean continental shelf of Egypt and consequently reducing the risk of its exploration.

INTRODUCTION The area of study represents the western sector of offshore Egyptian Mediterranean and covers an area of approximately 80000 Km2 that equivalent to 46% of the whole offshore Egyptian Mediterranean. The area is a very deep water province where 87% of its coverage area is of water depth ranges from 0 - 3000m. The area of study can be considered practically as unexplored until present. Past exploration activity is represented by only two dry wells, Sidi Barani-1 and Kiwi-1 drilled in 1976 and 2010 by WEPCO and Statoil respectively. The area of study has proven a challenge for exploration due to its water depth and its complex geology. In addition, seismic data quality degrades rapidly beneath the Messinian evaporites, thus many of the targeted traps are difficult to image. However, the quality of seismic data can be improved by applying new broad band seismic techniques, which is available now by the industry research. The receiver ghost can be removed using dual-sensor oceanbottom devices (Barr and Sanders, 1989) or a dual-sensor towed streamer (Carlson et al., 2007) or an over/under streamer acquisition (Brink and Svendsen, 1987). The over/ under technique can also be used to remove the source ghost


(Moldoveanu, 2000), but it requires flip-flop shooting of two sources at two different depths, which ultimately halves the survey shot-point density. Alternatively, the source ghost can be attenuated using a beam steering technique originally developed some 60 years ago for dynamite land acquisition (Shock, 1950). The principle is to detonate charges at various depths in a sequence that constructively builds the downgoing wave at the expense of the up-going wave. This way the energy of the ghost (surface-reflected up-going wave) is reduced compared to that of the primary pulse. In this paper we adapt the beam steering approach to air gun arrays in the marine environment. In order to take the edge off these challenges, EGAS decided to evaluate the prospectively of area by defining its potential and its exploration risks. In addition, EGAS plans to acquire a new speculative seismic survey with a target to acquire a minimum of 20,000 km of 2D & 6,000 km2 of 3D seismic data. The objective of this study was to evaluate the hydrocarbon potential of the area and defining its hydrocarbon prospectively. The results of the study pointed out to the existence of at least 3 working petroleum systems and a variety of untested Deepwater plays.

PAST EXPLORATION The area of study as shown by (Figure1) represents the western sector of offshore Egyptian Mediterranean and covers an area of approximately 80000 Km2 that equivalent to 46% of the whole offshore Egyptian Mediterranean. Since 1976, the exploration activities of this vast region as shown by (Figure 2) were carried out by only 4 operator companies; WEPCO, Shell, Statoil and OMV. In addition, 2 Non – exclusive 2D seismic surveys were carried out by Veritas (1999) and TGS (2005). WEPCO COMPANY drilled the Sidi Brani-1 exploratory dry well in 1976. The well was drilled at water depth 27 m at a distance of 10 Km approx. to the shore and targeted a Mesozoic structural trap. The well reached its final depth at 4572 m (-4555 m) and bottomed at Upper Carboniferous. STATOIL COMPANY was granted both El Dabaa Offshore and Ras El Hekma Offshore concessions in 2007 of coverage area 8368 km2 and 9802 km2 respectively. Acquired 2616 line Km. of 2D and 4850 km2 of 3D seismic data in the northern part of the two concessions and drilled Kiwi-1 exploratory dry well in El Dabaa Concession. The well drilled at water depth of 2,705m. and targeted UpperMid Miocene deep water channel trapped in an elongated N-S large 4-way dip closure. The prospect was supported by a flat event on seismic sections. However, drilling showed that the assumed flat event represents a flooding surface with carbonates and sandstones stringers. Accordingly, the well was sidetracked at 4,258 m. in order to encounter

seismic reservoir facies of Qantara Fm. Of Lower Miocene. The sidetrack well encountered 105m net sand reached to Oligocene over a 330m interval with average porosity of 20%. Pressure tests gave a water gradient. Reason for failure was interpreted to be due to structure/absence of a valid closure. OMV Company was granted obaiyed offshore concession in 2007. The block covered an area of 9,140 km2 also acquired 1350 km2 of 3D seismic data in the southern part of the concession and relinquished in 2011.

NON- EXCLUSIVE SEISMIC SURVEYS 2 Non – exclusive 2D seismic surveys were carried out by Veritas and TGS companies VERITAS COMPANY in 1999, Veritas acquired 4985 km of regional 2D seismic data TGS COMPANY in 2005, TGS acquired 6378 km of 2D seismic data in order to infill the previous survey. In addition, TGS reprocessed the data acquired by Veritas in 1999.

SEISMIC DATA QUALITY Seismic quality degrades rapidly beneath the Messinian evaporites, thus many of the targeted Pre - Messinian traps are difficult to image. Seismic data quality of Pre - Messinian section in the Nile delta basin is not only limited by the thick layer of Messinian evaporites but it also limited by the structural complexities and abrupt changes in thicknesses of the overlying salt. This might be the reason why in general, the pre-Messinian section, of the offshore Eastern Delta is of better and more consistent seismic quality than the data of the Herodotus basin which is characterized by rapid changes in salt thickness and severe salt structural deformationparallelism of the base and top of the salt ( In addition to the impact of Messinian evaporites, seismic data quality of pre-salt section is limited also due to the Lateral velocity variation within the overburden Plio-Pleistocene sediments, growth faults, anomalous seismic velocity intervals of over-pressured formations, lateral variations in reservoir thickness and N/G, lower S/N ratio and multiples. below the salt due to varying salt thickness. These lines also show time migration not smiling due to lateral velocity variations. (Figure 3)

EXPLORATION CHALLENGES The area of study has proven a challenge for exploration due to it›s -: Ó Ultra to deep water depth Ó Complex geology show in (Figure 4)

Petroleum Today - November

2016

29


Ó Limited geological and geophysical data Ó Poor quality of seismic data In Order to Take the Edge Off These Challenges, The existing geophysical data coverage by 2D and 3D data is limited, and the 2D generally poorly images the subsurface in many areas where it has been acquired. Reprocessing of this existing legacy 2D data, which consists of three data vintages from 1999, 2005 and 2007, is currently being undertaken using up to date broadband processing sequences, in which both receiver- and source-side deghosting will be applied. Denoise techniques including demultiple will be very important in addition to pre-stack depth migration to optimize the use of this vintage data. In addition, PGS is going to acquire a new speculative seismic survey with Broad Band technology to reveal deeper targets as minimum of 20,000 L.km of 2D & 6,000 km2 of 3D seismic data and reprocessing 11400 L.km and 6200 3D Km2 to evaluate the prospectivity of the area by defining its potential. Combined with the reprocessed legacy data, this is hoped to improve the definition and understanding of structural and lithological trends that have been interpreted using the old existing data.

REGIONAL GEOLOGY TECTONIC EVOLUTION The Eastern Mediterranean basin represents a very complex tectonic setting, which includes the northward moving African plate, the N–NW moving Arabian plate, and the westward moving Eurasian plate (Figure 5). The area of study is located in a complex structural area in front of an active Accretionary Prism (Mediterranean Ridge) and bounded to the south by the delta hinge fault system. The area stretching from Western Desert, eastwards the Nile Delta through the North Sinai to the Haifa area shows similar geological setting and has undergone four main tectonic phases 1-Extensional Phase (Triassic through the Early Jurassic) During the Triassic/Early Jurassic, the opening of the central Atlantic had separated Africa and North America, The movements caused a sinisterly east-west mega shear between Europe and Africa. NE-SW fracture zones were generated and gradually developed as regional faultbounded basin. Fault bounded half grabens were created and sediment wedges were developed. Each fault block reacted separately from the others. 2) Passive Margin Phase (Late Jurassic through the Early Cretaceous) A post-rift, passive margin stage was initiated in the area, along the Mediterranean coast, as a result of crustal cooling and thermal subsidence. The difference of subsidence rates from the south to the north in the Nile basin, have initiated

30 Petroleum Today - November

2016

the formation of the Mesozoic depositional Hinge-Belt. The Hinge-Belt is characterized by a major facies change in the Mesozoic section, where well-bedded platform carbonates to the south change to finer grained slope and basinal facies to the north. 3) Compressive Phase (Late Cretaceous to Early Tertiary) During the Late Cretaceous to Early Tertiary (Laramide) time, Africa moved west – northwest relative to Eurasia, which produced a right lateral shear couple between North Africa and Eurasia, causing the rejuvenation of the deep seated faults and basin inversion in north Egypt. This tectonic event, known in the Middle East as Syrian Arc System, produced a belt of asymmetrical NE trending, doubly-plunging anticlines. 4) Distension Phase (Late Eocene to the Present) After the compressive folding with SE over thrusting, at the end of Eocene, There was an immediate relaxation and the beginning of a distension phase. The uplifted northern blocks that sank rapidly were overlain by thick OligoMiocene clastic sediments. In the Nile Delta, a thick section of Oligo-Miocene deltaic to basin deposits was accumulated above the Eocene-Cretaceous carbonate platform. Cross section direction S-N according to Dolson in the area of study indicating pre-cretaceous extensional faulting along the west Mediterranean margin (figure13) The area of study comprises three working petroleum systems 1) Petroleum System “A”: Basal and Mid Pliocene Gas Play 2) Petroleum System “B”: Oligocene- Miocene structural play and Low stand Incised Valley/ Submarine Canyon Play 3) Petroleum System “C”: Jurassic Carbonate and Cretaceous turbidity sand reservoirs trapped in “Syrian Arc” Inversion structures. The prospective plays of the area of study exhibit a variety of trap mechanisms and different reservoirs types, some plays have been tested successfully while other are not yet tested. The main prospective plays in the area can be categorized by its hydrocarbon systems or geological age into Pliocene plays, Neogene Plays and Mesozoic Plays.as shown in (Figure 8) 1. Pliocene Plays: Two main Pliocene plays exist in the area of study a) Rotated Fault Blocks (Figure 9) and b) Salt Cored Anticlines (Figure 10) 2. Oligo/Miocene Plays: Oligo/Mio plays are structural plays where reservoir facies trapped in over 4- way dip closures, / or draped over anticlinal


Since 2003, flow measurement Systems Company has been established according to the investment authority laws and executive regulations to serve the oil &gas sectors as well as industrial & commercial sector in Egypt & the region to provide hydro test and calibration services. We are accredited by the ILAC, based on the international mutual recognition arrangements (MRA), under the guidelines of ISO/IEC 17025 for general requirements for competence of calibration and testing laboratories. We are certified ISO 9001, OHSAS 18001 and ISO 14001. The ILAC is the peak international authority on laboratory accreditation. Laboratory accreditation provides our clients with formal recognition of the competence of our laboratory. We are re-evaluated regularly by the accreditation body to ensure our continued compliance with requirements. Thus, being accredited is highly regarded both nationally and internationally as reliable indication of our technical competence. Accordingly our data is readily accepted overseas. PRESSURE TEST

HOT OIL FLUSHING Helium Leak Detection is used as a final commissioning test to provide operator confidence in the safety and environmental integrity of new and existing processing facilities. The Helium leak test is then carried out by injection the 1% Helium and 99% Nitrogen test gas mixture into the system in controlled pressure stages until the test pressure is achieved. The recommended test pressure is the maximum allowable working pressure or up to 95% of relief valve set pressure.

Ó Fully computerized and plc controlled test unit, capable of building pressure up to 30,000 psi by using two air-driven pumps, one for quickfilling and the other to build up pressure to the test value. Ó The pressure test Monitored digitally on system wide screen and recorded on paper charts to issue full test report. Ó Camera system is installed for monitoring the test and observing any leakage. Ó The test unit operated with remote control systems

HIGH PRESSURE WATER JETTING

CALIBRATION SERVICES Ó Calibration for pressure gauges up to 30 KPSI (Analog &Digital) Ó Calibration for pressure recorder (Renting and repair) Ó Calibration for tong torque and tong line pull systems Ó Calibration for silo tanks weight indicator systems. Ó Length measurement tools (verniercallipermicrometers)

AIR BLOWING

PIPELINE SERVICES

Objective : Air blowing services as an efficient way to remove construction debris, loose rust, liquids, and other contaminants from process piping. Application processes : Ó Air Flushing for piping diameters less than 6”. Ó Air Blowing (Buffing) for piping diameters bigger than 6”.

Equally applicable to new build modules as well as existing plant , good flange management can provide a single point source of all information relating to the history, make up or any other relevant details relating to all flanges within a system. Applications: Ó Used during engineering construction, commissioning and shutdowns Ó Flange break register during shutdown and maintenance

FMS (PL&IS) offers jetting equipment capable of working at ultrahigh pressures for the removal of inner preservation coatings, paints and accumulated hard scale. High-pressure jetting hoses can be used with both static and rotating nozzles and fluid supplied by either electric- or diesel-driven pumps. Hydro jetting can also be used on external surfaces, reducing the need for sand blasting or removing the hard scale.

Q2-0101

FLOW MEASUREMENT SYSTEMS (FMS) 177 Fifth & Sixth District, Industrial Zone, Zahraa Al Maadi Cairo Egypt

Calibration of Pressure Working Devices; Inspection of Safety-Relieving Devices; Provision of Liquid and Gas Pressure Test Services

No Exclusions Identified as Applicable

Effective Date: Expiration Date: Registered Since:

MAY 31, 2016 MAY 31, 2019 MAY 31, 2016

Contact Persons:

Khaled abdeltawab General Manager Mob. 0 12 2364 0198 Email. K.tawab@fms.com.eg Ahmed Labib Technical Manager Mob. 01211122491

Amr Shawky Hassan Shaalan Admin. & Security manager Marketing Specilist Mob. 01282783499 Mob. 01211122493 Email. it@fmseg.com Nadine Afifi Sayed Ahmed Senior Acc. & purchasing Financial Accountant Mob. 01273773385 Mob. 201211122494 Email. F1@fmseg.com Email. fm@fmseg.com admin@fms.com.eg admin@fms.com.eg


highs. In addition, there is a potential of stratigraphic component in trapping due to lateral facies change shown in (Figure 11) 3. Mesozoic Plays: Anticlinal Inversion structures are the main play existing in the area of study shown in (Figure 12) BUILD UP SYSTEM

CARBONATE

PALY

PETROLEUM

New play concept proved in Mediterranean Egypt with the likely presence of carbonate reservoirs of both Lower Cretaceous and Lower Miocene age. Shallow-water platform carbonate deposition, similar to that of the onshore Levant continental margin to the east (part of the North African plate), was followed by submergence to bathyal depths in the Late Cretaceous to middle Eocene, and punctuated by depositional and tectonic hiatuses. Tectonic uplift (~1 km) was followed by shallow-water carbonate deposition in the Miocene. The platform was sub aerially exposed during the Messinian desiccation crisis. During the early Pliocene, the platform subsided to bathyal depths associated with localized accumulation of limestone debris flows. Subsidence accelerated in the late Pliocene-early Pleistocene. Build up Pre salt structures model (Figure 13) - Build up discovery in pre Messinian structure (carbonate) - Laterally charged by biogenic gas as shown in Pre Messinian structures analogy in west Mediterranean as shown in (Figures 14 and 15) - Similar temperature window, thus similar window of biogenic gas generation - Lateral charge possible due to long distance unconformities - Sealed by thick salt - To mature this leads need denser seismic data grid to assess the area

INTRODUCTION OF MODELLING This study is a 1-D regional maturity-modeling study carried by Stratochem Services. The current 1-D study was undertaken in order to evaluate the hydrocarbon potential of proposed source rocks for the Pre-Messinian Petroleum System in the West Mediterranean Sea, Egypt. The 1-D models were created using the software (created by Sirius Exploration Geochemistry).The specific objectives of this basin modelling study were to estimate the amount and timing of hydrocarbon generation and expulsion from the proposed source rocks for the Pre-Messinian Petroleum System in the West Mediterranean Sea, Egypt. Used 1-D to build the database of stratigraphy, measured

32 Petroleum Today - November

2016

maturity, thermal data and geochemical data in order to test assumptions and determine the most geologically reasonable interpretation of the available data. It is advantageous to constrain such models as much as possible. Therefore, a number of wells with measured data were selected for the purpose of calibration (i.e., creating a good match between calculated curves and measured data by making geologically sound modifications to the input parameters). REQUIRED MODELING DATA INCLUDE: Ó Stratigraphy – Formations, hiatuses, and erosional events with missing thicknesses and beginning ages of all events. This is important for modeling the burial history. Ó Lithology data – Selection of a lithology includes a wide range of petrophysical properties associated with that lithology. Important in both the burial history and thermal history. Ó Thermal data – Surface temperature and heat flow, or geothermal gradient. The thermal history is created on the basis of heat flow, which is calculated from corrected bottom hole temperature and rock properties. The thermal history is the most important control in hydrocarbon generation. Ó Geochemical data – Kerogen type of the source rock and initial total organic carbon (TOC) estimates for modeling hydrocarbon generation and expulsion. Often there is a great deal of uncertainty associated with many of the input parameters used for basin modeling. It is therefore wise to compare the model with the “real world.” The most effective way to do so is by calibrating with measured data. In the absence of measured data, comparison with analogous or nearby wells can be a valid alternative. Once a satisfactory model has been constructed, preliminary estimates of hydrocarbon potential and/or hydrocarbon charge can be generated. However, even in the models calibrated with the best well data, there are always uncertainties. All modelling work in this study was performed software for the initial 1-D modelling. Two 1-D wells models (Kiwi-1 and Sidi Barrani-1) and five 1-D pseudo well models, which are labeled P1-Nile Delta Cone, P2-Herdotus Basin, P3-KIWI DEEP, P4-SYRIAN ARC, and P5-Mediternean Ridge, Thickness of deposit above basement is important item (Figure 16) the map below show the thickness of sediment Mediterranean of Egypt about 159- km. so were created for this study and are shown on the location map (Figure 17). Locations of all of the pseudo wells were proposed by the authors. The details of the logistical framework are: ● All pseudo well locations were placed along seismically


defined objectives. ● Wells and Pseudo well tops were provided by the Authors ● Geologic ages were provided by Authors ● Lithology for wells were obtained from the composite logs, while for the pseudo wells were derived from nearby calibration wells. ● Software 1-D models for the pseudo wells were constructed using similar tectonic events, source rock facies, paleo temperatures, and depositional environments as in the calibration wells.

INPUT DATA The basis for all stratigraphic nomenclature in the study area is the litho-stratigraphic scheme represent Nile Delta and North Western Desert standard stratigraphy (stratigraphic Column Figure 18) and a search of the general literature. In order to provide a common stratigraphic datum for all models, each location was modeled to the base of the Jurassic. Three main tectonic events affecting the study area were based on the major tectonic events affecting the unstable shelf of the North Western Desert and Nile Delta of Egypt. The erosion amount was estimated after careful study of the geological and seismic data. The main tectonic assumptions utilized in the models were: 1. The Jurassic event (up to 500 ft. of erosion is assumed). 2. The Late Cretaceous event (up to 1500 ft. of erosion is assumed). 3. The Oligocene hiatus. The lithologies were modeled for each stratigraphic event by mixing a standard set of pure end-member lithologies. The percent of each end-member lithology was calculated for the drilled section from the received composite logs for the modeled wells. For the unpenetrated section, estimation of the lithologies was carried out based on the nearby wells and literature review. The upper thermal boundary condition is defined by an average sea floor temperature history. These temperatures have been estimated using a world climate record (surface temperatures vs. latitude) corrected for the current water depth. A present-day temperature of 4560- o F was used, while the paleo-surface temperature was estimated by software based on the current latitude and longitude of Kiwi-1 well (Figure 19). The subsurface temperature includes multiple RFT readings were available for Kiwi-1 well only. The observed logderived RFT temperatures in this well have been corrected by a standard correction factor of 10%. Two main proposed source rock intervals were considered as follows:

- Oligocene Tineh SR with adjusted Mahakam Delta kerogen, 3.0% TOC and 100 ft. thickness - M. Jurassic: Khatatba SR with adjusted Mahakam Delta kerogen, 3.0% TOC and 100 ft. Thickness (Figure 20) shows the published (left) and adjusted activation-energy distributions for the Mahakam Delta kerogen used in this study. The adjusted kinetic parameters were used in this study. For all thermal calculations, heat flow was used as the lower boundary condition at the base of the sediments. Present day heat flow is defined by the subsurface temperatures (RFT) and the lithology-dependent thermal conductivities using the Transient Heat Flow method. For the heat flow history, a constant heat flow equal to the present day heat flow through time is used. In the study area, present day heat flow values vary from ~34mW/m2 to ~55mW/m2. The available calibration data for the individual wells are summarized in (Figures 22 and 26). (Figure 22) shows a good calibration for the temperature data of Kiwi-1 well, while (Figure 26), shows a good calibration for the maturity data of Sidi Barrani-1 well. After calibrating the models, the geohistory curves of the modelled wells and pseudo wells are reconstructed to the base of the Jurassic honoring all calibration parameters.

MODELING RESULTS The 1-D modelling results for the wells and pseudo wells are summarized in (Figures 2148-). Apart from Sidi Barrani-1 well, the most rapid and main burial phase starts by the end of the Paleocene and continues to present day. (Kiwi-1 well and all 5 pseudo wells; (Figures 21, 29, 33, 37, 41 and 45). Consequently, the investigated source rock intervals are currently at their maximum depth and temperature. On the other hand, in Sidi Barrani-1 well, the most rapid and main burial phase starts by the end of the middle Jurassic and continues to the early stages of the upper Cretaceous. During the Upper Cretaceous to recent minor or low sediments are preserved (Figure 26). By the end of the Jurassic and Cretaceous and the Tertiary, several events affected the area and most of the wells and pseudo wells. The upper Cretaceous sediments were subjected to noticeable uplift and erosion (inversion with the Syrian Arc system). In Sidi Barrani-1 well, the Tineh source rocks are not encountered, where Dabaa Formation (Oligocene age) is not a source rock in this area. In Kiwi-1 well and the pseudo wells, Tineh Oligocene source rocks are proposed to be present with 100 ft. thickness. The Oligocene Tineh source rocks are currently in the “Early-Mid Mature” stage (0.51.0%Ro) but generally less than peak oil generation defined by 0.85% Ro (Figures 23, 30, 34, 38, 42 and 46). Based on this

Petroleum Today - November

2016

33


maturity No or minor hydrocarbon generation (TR<20%) are encountered (Figures 24, 31, 35, 39, 43 and 48) but the generated hydrocarbon amounts are not adequate to exceed the threshold of the hydrocarbon expulsion and therefore no expelled hydrocarbon could have been taken place on the whole region. In Kiwi-1 well, the Middle Jurassic source rocks are currently in the “Mid Mature” stage (0.71.0%Ro) (Figure23) and minor hydrocarbon generation has been occurred (TR<25%; Figure 25). The generated hydrocarbon amounts are not adequate to exceed the threshold of the hydrocarbon expulsion and therefore no expelled hydrocarbon could have been taken place on the in this well. In the pseudo wells, the Middle Jurassic source rocks reached its maximum maturity recently and is currently in the “Late-Mature” stage (1.01.35%- Ro) to the early stage of the «Main-Gas Generation» phase (1.352.60%- Ro) (Figures 30, 34, 36, 38, 42 and 46). The Middle Jurassic source rocks in these locations start to generate hydrocarbons by the end of the Oligocene time and continued to present day and about 4580%- of its kerogen content be converted to hydrocarbons (Transformation Ratio [TR] ~4580%-). Expulsion from the Middle Jurassic source rocks (Figures 31, 35, 39, 43 and 45) started recently and is substantial throughout the MiddleLate Miocene and has continued to present day. On the other hand, in Sidi Barrani-1 well, the Middle Jurassic source rock reaches the early stage of the «Main-Gas Generation» phase (1.352.60%- Ro). The Middle Jurassic source rocks in this location start to generate hydrocarbons in the Early Cretaceous time and the main phase of the generation occurred in the Upper Cretaceous time and about 70% of its kerogen content is converted to hydrocarbons (TR~70%). From the Upper Cretaceous and continued to present day only minor amounts of hydrocarbons are generated and only additional 5% of its kerogen content is converted to hydrocarbons. Expulsion from the Middle Jurassic source rocks in Sidi Barrani-1 well (Figure 28) mainly occurred in the Upper Cretaceous time. The expulsion volumes from the Middle Jurassic source rocks in each modeled well and pseudo well could be summarized as follows: 1. In Kiwi-1 well no expulsion could have been taken place 2. In Sidi Barrani-1 well, c. 41 BOE/acre*ft. rock of oil and c. 21 BOE/acre*ft. rock of gas could have been expelled.

The Total Expelled Hydrocarbon are: Total expelled volumes from the study area of about 4.05E+10 BOE oils and 1.81E+10 BOE Gases. Total HC expelled volumes from the study area of about 2070 TCF. Assuming 0.6 migration coefficient, the total HC in-place of about 1240 TCF and as recovery factor assuming 0.25 the total HC recovered of about 315 TCF.

34 Petroleum Today - November

2016

CONCLUSIONS This study is a 1-D regional maturity-modeling study carried out by Stratochem Services. The 1-D models were created using the software. The specific objectives of this basin modeling study were to estimate the amount and timing of hydrocarbon generation and expulsion from the proposed source rocks for the Pre-Messinian Petroleum System in the West Mediterranean Sea, Egypt. Good calibration for the temperature data of Kiwi-1 well, while a good calibration for the maturity data of Sidi Barrani-1 well could be established. After calibrating the models, the geohistory curves of the modeled wells and pseudo wells are reconstructed to the base of the Jurassic honoring all calibration parameters. The most rapid and main burial phase starts by the end of the Paleocene and continues to present day in Kiwi-1 well and all 5 pseudo wells, while in in Sidi Barrani-1 well, the most rapid and main burial phase starts by the end of the middle Jurassic and continues to the early stages of the upper Cretaceous. The Oligocene Tineh source rocks, where proposed, are currently in the “Early-Mid Mature” stage (0.51.0%- Ro) but generally less than peak oil generation defined by 0.85% Ro. Based on this maturity no or minor hydrocarbon generation (TR<20%) are encountered but the generated hydrocarbon amounts are not adequate to exceed the threshold of the hydrocarbon expulsion and therefore no expelled hydrocarbon could have been taken place on the whole region. The Middle Jurassic source rocks reached its maximum maturity recently and is currently in the “Late-Mature” stage (1.01.35%- Ro) to the early stage of the «Main-Gas Generation» phase (1.352.60%- Ro) in the pseudo wells. The Middle Jurassic source rocks in these locations start to generate hydrocarbons by the end of the Oligocene time and continued to present day and about 4580%- of its kerogen content is converted to hydrocarbons (TR~4580%). On the other hand, the Middle Jurassic source rocks in Sidi Barrani-1 start to generate hydrocarbons in the Early Cretaceous time and the main phase of the generation occurred in the Upper Cretaceous time and about 70% of its kerogen content is converted to hydrocarbons (TR~70%). From the Upper Cretaceous and continued to present day only minor amounts of hydrocarbons are generated and only additional 5% of its kerogen content is converted to hydrocarbons. Expulsion from the Middle Jurassic source rocks in Sidi Barrani-1 well mainly occurred in the Upper Cretaceous time, while in pseudo wells the expulsion substantial



throughout the Middle-Late Miocene and has continued to present day. Total expelled volumes from the study area of about 4.05E+10 BOE oils and 1.81E+10 BOE Gases. Total HC expelled volumes from the study area of about 2070 TCF. Assuming 0.6 migration coefficient, the total HC in-place of about 1240 TCF and as recovery factor assuming 0.25 the total HC recovered of about 310 TCF. The new data will be positioned in areas where the legacy coverage is poor like in the SE of the Shelf area and within the Herodotus Basin. Infill to the existing 2D coverage will also provide better control when identifying and quantifying potential leads. In this frontier area, tie lines to exploration wells outside the survey area will be highly important. Ties from the exploration wells within the survey area to pre-salt gas discoveries would be valuable. 2D gravity and magnetic data is included in the new acquisition program planning to further enhance the geological understanding of the area. The re-processed upgrade of the legacy data combined with the new broadband data coverage are essential for defining new play types and are expected to reveal similar potential to that seen in analogous geological settings e.g. deep Nile Delta and west Cyprus. The seismic data will be the basis for defining new exploration blocks and for future licensing rounds and the objective is to provide the industry with optimum geophysical data allowing a better understanding of the complex geology and to help stimulate further exploration in the area. EGAS is proactive in the exploration of the promising frontier basin west of the Mediterranean. The rationale behind developing Zohr field “founded approach and this approach to be repeated successfully may be in west Mediterranean SPEC project area In the final the authors believes there are many opportunities in the area of study and it will be future of gas and oil of Egypt

REFERENCES Allen, P.A. and J.R. Allen, 2005, Basin Analysis, 2nd Edition, Malden, MA, Blackwell, 549 pp. Burnham, A.K., 1989, a simple kinetic model of petroleum formation and cracking, Lawrence Livermore National Laboratory Report UCID-21665, 11 pp. Burnham, A.K. and J.J. Sweeney, 1991, Modeling the maturation and migration of pe-troleum. In R.K. Merrill, ed., Source and Migration Processes and Evaluation Techniques, Treatise of Petroleum Geology, Handbook of Petroleum Geology, Tulsa, AAPG, pp. 55 - 63. McKenzie, D., 1978, some remarks on the development of sedimentary basins, Earth and Planetary Science Letters, v. 40, pp. 25 - 32. Pepper, A.S. and Corvi, P.J., 1995, Simple kinetic models of petroleum formation. Part III: Modelling an open system, Marine and Petroleum Geology, v. 12, pp. 417 - 452. Pitman, W.C. III and J.A. Andrews, 1985, Subsidence and thermal history of small pull-apart basins. In K.T. Biddle and N. Christie-Blick, eds., Strike-Slip Deformation, Basin Formation, and Sedimentation, Tulsa, SEPM, pp. 45 - 49. Rybach, L., 1986, Amount and significance of radioactive heat sources in sediments. In J. Burrus, ed., Thermal Modeling in Sedimentary Basins, Paris, Éditions Technip, pp. 311 - 322. Sclater, J.G. and P.A.F. Christie, 1980, Continental stretching: an explanation of the Post-Mid-Cretaceous subsidence of the Central North Sea Basin, Journal of Geophysical Research, v. 85, pp. 3711 -3739. Steckler, M.S., 1985, Uplift and extension at the Gulf of Suez: indications of induced mantle convection, Nature, v. 317, pp. 135139-. Waples, D.W., 1980, Time and temperature in petroleum formation: application of Lopatin›s method to petroleum exploration, AAPG Bulletin, v. 64, pp. 916 - 926. Waples, D.W., 1996, Comment on «A multicomponent oil-cracking kinetics models for modeling preservation and composition of reservoired oils» by Lung-Chuan Kuo and G. Eric Michael, Organic Geochemistry, v. 24, pp. 393 - 395. Waples, D.W. and Mahadir Ramly, 2001a, A statistical method for correcting log-derived temperatures, Petroleum Geoscience, v. 7, pp. 231 - 240. Waples, D.W. and J.S. Waples, 2004a, A Review and evaluation of specific heat capacities of rocks, minerals, and subsurface fluids. Part 1: Minerals and nonporous rocks, Natural Resources Research, v. 13, pp. 97 - 122. Waples, D.W. and J.S. Waples, 2004b, A Review and evaluation of specific heat capacities of rocks, minerals, and subsurface fluids. Part 2: Fluids and porous rocks, Natural Resources Research, v. 13, pp. 123 - 130.

Figure 1: Area of study & New Seismic Acquisition project (SPEC)

36 Petroleum Today - November

2016


Figure 2: area of study Past Exploration

Figure 3: schematic map shows quality of Pre- Messinan seismic data

Figure 4: Area of study data challenges

Petroleum Today - November

2016

37


Figure 8: Western Mediterranean play types

Figure 5: Main Tectonic Elements of Eastern Mediterranean Area

Figure 9: Example of Pliocene Prospects (Rotated Fault Blocks)

Figure 6: Sketch showing the tectonics Phases of the area of study Figure 10: Example of Pliocene Prospects (Salt Cored Anticline)

Figure 7: Western Egypt Margin-Play Model

38 Petroleum Today - November

2016

Figure 11: Example of Oligocene/Miocene Prospects, Logan Prospect


Figure 12: Example of deep water Mesozoic leads, Bateekh Figure 16: Egypt Offshore Sediment Thickness Map (After Laske and Masters, 1997)

Figure 13: Build up schematic Model for petroleum system Play Elements Figure 17: area of study Locations of all of the pseudo wells

Figure 14: Seismic lines shows early cretaceous build up carbonate Figure 18: General Stratigraphic Column Nile Delta and North Western Desert

Figure 15: Seismic line show late Jurassic build up carbonate

Figure 19: Present and paleo-surface temperature for the study area


Figure 20. Published (left) and adjusted activation-energy distributions for the Mahakam Delta kerogen used in this study .The adjusted kinetic parameters were used in this study

Figure 24: Cumulative HC curve for Tineh source rocks plot for Kiwi-1 well

Figure 21: Geohistory plot for Kiwi-1 well Figure 25: Cumulative HC curve for Middle Jurassic source rocks plot for Kiwi-1 well

Figure 22: Temperature versus depth plot for Kiwi-1 well Figure 26: Geohistory plot for sidi brani-1 well

Figure 23: Vitrinite versus depth plot for Kiwi-1 well

40 Petroleum Today - November

2016

Figure 27: Vitrinite versus depth plot for Sidi Barrani-1 well


Figure 28: Cumulative HC curve for Middle Jurassic source rocks plot for Sidi Barrani-1 well

Figure 29: Geohistory plot for P1-Nile Delta Cone pseudo well

Figure 32: Cumulative HC curve for Middle Jurassic source rocks plot for P1-Nile Delta Cone pseudo well

Figure 33: Geohistory plot for P2-Herodots Basin pseudo well

Figure 34: Vitrinite versus depth plot for P2-Herodots Basin pseudo well Figure 30: Vitrinite versus depth plot for P1-Nile Delta Cone pseudo well

Figure 31: Cumulative HC curve Tineh source rocks plot for P1Nile Delta Cone pseudo well

Figure 35: Cumulative HC curve Tineh source rocks plot for P2Herodots Basin pseudo well

Petroleum Today - November

2016

41




Figure 36: Cumulative HC curve for Middle Jurassic source rocks plot for P2-Herodots Basin pseudo well

Figure 40: Cumulative HC curve for Middle Jurassic source rocks plot for P3-Kiwi Deep pseudo well

Figure 37: Geohistory plot for P3-Kiwi Deep pseudo well

Figure 41: Geohistory plot for P4-Syrian Arc pseudo well

Figure 38: Vitrinite versus depth plot for P3-Kiwi Deep pseudo well

Figure 39: Cumulative HC curve for Tineh source rocks plot for P3-Kiwi Deep pseudo well

44 Petroleum Today - November

2016

Figure 42: Vitrinite versus depth plot for P4-Syrian Arc pseudo well

Figure 43: Cumulative HC curve for Tineh source rocks plot for P4-Syrian Arc pseudo well


Figure 44: Cumulative HC curve for Middle Jurassic source rocks plot for P4-Syrian Arc pseudo well

Figure 47: Cumulative HC curve for Tineh source rocks plot for P5-Mediternean Ridge pseudo well

Figure 45: Geohistory plot for P5-Mediternean Ridge pseudo well

Figure 48: Cumulative HC curve for Middle Jurassic source rocks plot for P5-Mediternean Ridge pseudo well

Figure 46: Vitrinite versus depth plot for P5-Mediternean Ridge pseudo well

Petroleum Today - November

2016

45


Importance of Surveillance for Evaluating a New Reservoir Technology By

Gobran, Mahmoud H., SPE, Kinawy, Mahmoud M., SPE, Bayoumi, Radi S., and Shahin, Eman S., SPE, Gulf of Suez Petroleum Co.

A

bstract

Morgan is the largest field in Gulf of Suez Egypt. It started production in April 1967. Morgan comprises two main reservoirs; Kareem and Belayim. Both reservoirs have weak aquifer support. Waterflooding was implemented in February 1974 to support the depleted reservoir energy and improve the sweep efficiency. Currently the field is mature and most of wells are producing with high water cut. Kareem reservoir is heterogeneous and there is a high permeability variation between different layers and most of the injected water goes to high permeable layers.

BrightWaterTM1 Technology was developed to create baffles in the higher permeability layers to divert the injected water from previously swept layers to the un-swept zones which will improve the sweep efficiency. North Morgan Kareem reservoir selected as a pilot for BrightWater deployment by treating five injectors which are impacting on ten producers. BrightWater uses a temperature activated cross-linked polymer carried with the injected water. Their distribution within the reservoir is proportion to the distribution of injected water. As the injected water moves away from the injection wells it is warmed by reservoir rocks. This rise in temperature causes the BrightWater chemical to activate and pop up to plug the higher permeability zones. A complete evaluation for BrightWater is very important to define its value to be applied in other fields. Different surveillance tools were selected for Brightwater evaluation. These surveillance tools are summarized in: chemical Tracer detecting, well-testing, water cut measuring, pressure falloff / step-rate testing, injectivity monitoring, and production / injection logging. All of these surveillance tools will be used in the three phases of BrightWater treatment; before popping, at popping, and after popping.

46 Petroleum Today - November

2016

This paper will provide the BrigtWater technique principle for enhancing the sweep efficiency, the optimum surveillance tools to evaluate its impact and a real case history for North Morgan Kareem reservoir.

BrightWater Concept and Mechanism BrightWater is a sub-micron particulate chemistry that is injected downhole with flood water during a secondary recovery process. BrightWater has been designed to activate at a pre-determined “in-depth” location within the reservoir. It improves the sweep efficiency of water flood by restricting flow in high permeability channels and directing injection water deeply into un-swept formation (lower permeability). BrightWater is activated by the changes in temperature and time. When BrightWater (BW) is dispersed in the injection water with the help of an added surfactant the particles can move through the rock matrix until the temperature reaches a certain value or certain time has passed. At this time or temperature a BW particle diameter will expand (“pop” rather like popcorn but a lot slower), form association and block rock pores as suggested by the scanning electron microscope photo collage in Fig.1 This enables a flow resistance block to form in thief zones, diverting the injection water to displace previously un-swept oil in adjacent zones as illustrated by drawing shown in Fig. 2 The “popping” mechanism brings about two different flow diversion mechanisms: 1. The viscosity of the driving fluid rises after temperature rise, the viscous polymer now diverts the water flood to other areas. A problem can be that the viscosity is diminished again by dispersion of the BW during injection. This decrease will be less severe in case of a thin thief zone or a small channel. 2. Swollen particles will adsorb and reduce water flow.


Because the adsorption is irreversible, BW will contribute to a longer lasting diversion, another advantage is that BW particles will not be produced back again, this reduce separation treatment costs.

BrightWater Treatment in North Morgan Field North Morgan field has been started production in 1967, the field was initially developed under natural depletion, However, pressure support from the aquifer is limited causing a sharply decline in pressure, so a water injection was commenced in 1974 to re-pressurize the reservoir and enhance sweeping efficiency. The North Morgan field has been selected by GUPCO for BrightWater treatment on the basis of its reservoir properties, the existence of up-swept oil showed by logs. Also, it has been selected for certain reasons that will help in evaluating the efficiency of the treatment as: the production / injection pattern stability, testing capability and a good surveillance potential for both injectors and producers due to logistic issues in dealing with marine life as most of the treated wells are on the same platform. The proposal of BrightWater treatment in North Morgan area was to treat 5 injection wells from onshore using the Morgan Waterflood infrastructure. The wells to be treated are M119, M16, M118, M101A and M212. The production wells which they support are M120, M151, M206A, M187, M218, M221, M150, D5, M213 and M182. Figure 3 shows streamline map for the treated water injectors.

The Surveillance Tools Used in Evaluating BrightWater Treatment There are many surveillance tools can be used in evaluating the BrightWater treatment, these surveillance tools are summarized in: chemical Tracer detecting, well-testing, water cut measuring, pressure fall-off testing, step-rate testing, injectivity monitoring, and production/injection logging. Most of these surveillance tools can be used in the three phases of BrightWater treatment; before treatment, during treatment, and after treatment. 1. Chemical Tracer Detecting The technique of reservoir injection fluid flow monitoring using tracers has been applied in numerous fields throughout the world. Chemical tracer is a foreign species which are being injected through the injection water and monitored for it is presence in the produced water from offset wells. It is used to confirm the minimum transient time from injectors to producers which allow the treatment and subsequent operation of the wells to be planned to ensure that the BrightWater stays in the ground long enough to warm up and activate.

2. Well-Testing One of the major effective surveillance measurements is the well-testing for the producers to monitor the wells performance before and after the main treatment of the BW. Established production well testing for production wells which they expected to be affected by BW treatment should be performed periodically to detect any changes in the wells performance. 3. Well Head Samples As we are looking for 5 to 10 % water cut reduction. In order to monitor any changes in the production wells performance and any change in the water cut trend, well head samples of produced water should be taken directly from well-head on a routine basis. Well head samples schedule should be planned to be taken periodically for checking the water cut trend during the treatment process. 4. Pressure Fall of Tests Pressure Fall Off tests (PFO) for water injection wells which had been treated by BW were required in order to identify reservoir description (Skin, Rinv and Kh) before and after BW treatment. Overlay PFO’s derivative plot for pre and post BW treatment to identify any change in reservoir properties. 5. Step Rate Testing This is an old technology but it stills a reliable method to detect the formation fracturing pressure (FFP). Bright water treatment yields to change the reservoir permeability consequently change the formation fracturing pressure. Figure 4 shows the changing of FFP pre and post treatment phases. 6. Injectivity Monitoring Part of the surveillance plan is to record Well Head Injection Pressure (WHIP) and injection rates with time for the injectors to detect the popping up time and compare to design pop time. Established recording the injection rate and WHIP data for injection wells which have been treated to observe the BW impact on the flow as shown in figure 5. Hall plot is a steady-state method, originally developed to analyze the water injection well performance in waterflooding applications in oilfields. Hall Plot is generated from plotting the cumulative water injection versus the cumulative WHIP. Hall plot permits monitoring the water injectivity and injection efficiency continuously and provides means to identify the variations and / or changes in some reservoir properties that occur over the extended period of an injection. Therefore it can help in determining the BW pop-up time deep into the reservoir as shown in figure 6. 7. Production/Injection Logging Tools Monitoring of production and injection profiles across the production and injection wells is too important for evaluating

Petroleum Today - November

2016

47


the Brightwater treatment. Production/injection logging tool (PLT/PLSS) is used in detecting the contribution profile. PLT can give us an indication for the layers that are sharing in production and which ones are the main sources of production, PLSS is the equivalent tool for PLT in the injection well is which is used in detecting the water injection contribution against the different zones through the injectors. So it is recommended to run these logging tools in the interested production / injection wells before and after injecting the BrightWater to monitor any change in the layers contribution.

Practical Application for BrightWater Monitoring in North Morgan Field As discussed before there are many of Surveillance tools those can be used in evaluating the BrightWater Treatment. The Pre-treatment and Implementation phases will be only discussed here. Some of these tools have been applied on North Morgan wells to have a base line for BrightWater impacted wells to observe the outcomes of the treatment as:

in Permeability-Height (Kh) by overlaying the PFO›s derivative plots for pre and post BrightWater treatment as shown in figure 8. 5. Step Rate Testing Step Rate tests were performed in the assigned injectors for BrightWater treatment in pre-treatment phase. Another Step Rate tests will be performed during the post treatment evaluation phase. By comparison of the pre and post tests to check the effectiveness of the treatment. Figure 9 shows the results of one of the selected injectors pre BrightWater treatment. 6. Injectivity Monitoring A daily recording for injection Well Head Injection Pressure (WHIP) and injection rates for the injectors to detect the popping up time. Also, generating cumulative water injection versus cumulative WHIP which is known as Hall Plot will be used in determining the plugging that will happen due to BW popping-up deep into the reservoir. 7. Production/Injection Logging Tools

The optimum type of Tracer has been selected and injected the required volume with desired rate 40,000 bpd which is the same desired rate for the main treatment. The Tracer was injected before the main treatment by 18 weeks and weekly samples were collected and analyzed during this period in order to monitor the Tracer breakthrough in the different offset producers and after this period, no tracer has been detected which indicating that the main treatment will have sufficient reservoir transient time to pop-up which is expected to be 7 weeks. An example for the Water Tracer analysis to detect the injected Tracer is shown in table 1.

There is a great history about the production/injection logging in the all of North Morgan production/injection wells which is resulted in having a good base line for different layers contribution before BrighWater treatment. This history gives us a complete picture about the layering system within the reservoir and enables us to detect the high permeability zone where the most of injected water is going through and what are the main contribution zones in the producers as in. Fig. 10 which showing that top of K2 zone is taking 7090%of the injected water in the injectors (M118 & M119) and producing 7080%- in the producers (M206A & M12A). It is planned to run other logging tools in some producers and injectors during the post-treatment evaluation to monitor the contribution changing between the different layers.

2. Well-Testing

Conclusions

All the producer wells that were assigned for BrightWater treatment have been scheduled to be tested periodically every two weeks in the pre-treatment phase to have a good testing baseline. This will help in catching any changes in the wells performance due to BrightWater effect. Table 2 is showing the well testing schedule for the production wells.

Ó BrightWater is a thermal activated particle which developed to create baffles in the high permeability layers to provide better sweep for injected water within the reservoir.

1. Pre-Treatment Tracer Test

3. Well Head Samples Well head samples collecting and analysis are used in all treatment phases. Every week group of samples is being collected for each well of BrightWater producers. Sampling schedule was prepared to monitor the water cut trend in the different production wells as in Table 3. 4. Pressure Fall off Tests Pressure Fall off Tests were performed in most of treated injection wells that will be used to identify any change

48 Petroleum Today - November

2016

Ó The Bright Water Treatment evaluation is consists of three stages; pre, during and post treatment evaluation. Ó There are different surveillance tools that can be used in Brightwater evaluation as: chemical Tracer detecting, welltesting, water cut measuring, pressure fall-off / steprate testing, injectivity monitoring, and production / injection logging. Ó The complete evaluation for BrightWater is very important to define its value to be applied in other fields; therefore a good monitoring using different surveillance tools is a critical issue to have a considered evaluation.



REFERENCES 1. Danielle Ohms, Jennifer McLeod, Craig J. Graff, Harry Frampton, Jim C. Morgan, Jimtech S. Cheung, Katrina Yancey, and K. T. Chang, Incremental Oil Success From Waterflood Sweep Improvement in Alska. Paper SPE 121761 presented at the SPE International Symposium on Oilfield Chemistry, Woodlands, Texas, USA. 2022- April 2009. 2. Bayoumi, R. S. and Abdelmagied, M. I., Monitoring Injection Water Quality at Gulf of Suez. Proceedings of the 19th Ann. Conf. on Corrosion Problems In Industry, Egyptian Corrosion Society (ECS), Zaffarana, Egypt, 2123- Nov., 2000. 3. Salehi, M., Thomas, C.P., Kevwitch, R.M., Manrique, E., Garmeh, R., and Izadi, M., Perform Evaluation of Thermally-Activated Polymers for Conformance Correction Applications. Paper SPE 154022-MS presented at the SPE Improved Oil Recovery Symposium, 1418- April 2012, Tulsa, Oklahoma, USA. 4. Bruno Roussennac, Celso Toschi, Brightwater Trial in Salema Field (Campos Basin, Brazil). Paper SPE 131299 presented at the SPE Europec/Eage Annual Conference and Exhibition held in Barcelona, Spain, 1417- June 2010. 5. Hall, H.N., How to Analyze Waterflood Injection Well Performance, World Oil, October 1963.

Figure 1: Schematic of the «popping›› mechanism induced by heat, BW particles will grow about 10 times their original size

Figure 2: BrightWater sweeps down the channel Centre diverting the waterflood into the poorly swept margins.

50 Petroleum Today - November

2016


Figure 4: Step Rate Test Case Example

Figure 3: Streamline map for NM BrightWater Treatment Wells

Figure 5: WHIP and Water Injection Rates with time

Figure 6: Hall Plot

Figure 7: PLSS contribution Pre and Post Treatment (Case Example)

Petroleum Today - November

2016

51


Figure 8: PFO Derivative plot for one of the treated injectors (M16) before BW treatment

Figure 9: SRT Results for one of the Selected Injectors (M16) before BrightWater Treatment.

52 Petroleum Today - November

2016


Interview with Dr. Ayham Ammora Director and country Chairman Egypt Area Business of Egypt, North Africa and Levant 1. First of all we need to shed light on Chevron Lubricants and its services? Chevron is one of the world’s leading integrated energy companies. Through its subsidiaries that conduct business worldwide, the company is involved in virtually every facet of the energy industry. Chevron Lubricants is the largest manufacturer of group 2 premium base oils in the world with a capacity of nearly 60,000 barrels per day. It is also the leading international oil company with the competitive advantage of having a complete lubricants value chain from base oil manufacturing to additive technological development to finished lubricants manufacturing and marketing.In addition to cutting edge technologies, our team of highly trained technical experts provide customers with bespoke solutions and second to none after sales service that meet their most stringent requirements every time without fail. 2. What out performs Proserv on the other Lubricants services companies? Proserv is one of the leading upstream companies in Egypt that experienced robust growth to date and is eager to grow further. Their progression further downstream into lubricants is a wise and natural step for such an ambitious and professional organization, looking to diversify their portfolio, manage risk and capitalize on their existing know how to generate value in a large and thriving lubricants market. As our partners in Cairo and Upper Egypt, they have performed very well in a short space of time. Their commercial acumen, product knowledge, marketing and organizational capabilities, in addition to an excellent after sales service, give them the necessary edge to beat the competition. 3. What are the most important developments and changes in the company in the current year? We are currently on an exciting and significant growth journey for Chevron Egypt Lubricants in which we cemented our partnerships with our domestic partner Proserv, and Shemy Oils, through whom we are ramping up our commercial sales and national coverage significantly. We are continuously enhancing and perfecting our industrial product offering to include the most advanced products technically, coupled with a world class solutions offering known as RBL (Run Better Longer) to directly address customer needs and provide the most optimal and cost effective solutions. We cemented our partnerships with many key players in energy, mining, construction, marine etc. to whom we supply directly. In our

export markets, we areexperiencing robust growth in those countries within our sphere of influence and in particular; Ethiopia, Djibouti, Lebanon and Libya. We renewed our long term partnership agreements with National Oil Ethiopia, the largest lubricants player in Ethiopia, and inaugurated National Oil Djibouti after acquiring Oil Libya in Djibouti. We cemented our 50+ year partnership with our Lebanese partner, Medco, one of the most influential players in the Levant. We have also ramped up our commercial activities in Libya and Algeria, with much more in the pipeline. 4. Is there an expansion plan for the company in the coming period in Egypt or abroad? Our strategic intent is simply to grow bigger, better and faster than the competition. We have a corporate strategy for Chevron Egypt Lubricants that will see us become the number one lubricants player in the region by 2030. We have detailed channel specific strategies and have already made robust progress on that trajectory. 5. Was the company affected by the global economic changes and low price of crude oil and what are the alternative plans for facing these challenges? The delayed global economic recovery coupled with the sharp drop in oil prices affected everyone, however, the fully integrated nature of Chevron with mastery over the entire energy value chain from the well head to the markets, Chevron’s robust global portfolio, and team of highly experienced professionals enable it to not only weather the storm but also see and create opportunities for growth where others don’t. We used these global market challenges as an opportunity to optimize our businesses, improve our product offering, and exceed customer expectations. This will place us in good stead when the market conditions improve as they inevitably will.

Petroleum Today - November

2016

53


Figure 10: cross section shows the presence of layering system between the injectors (WIW) and producers (Prod) Table 1: Water Tracer Analysis – North Morgan Field

54 Petroleum Today - November

2016


Table 2: Well Testing Schedule for BrightWater Wells

Petroleum Today - November

2016

55


Table 3: Sampling Schedule for BrightWater Wells

56 Petroleum Today - November

2016



Industry At A Glance by Ali Ibrahim Table (1) World Crude oil Supply.* Supply (million barrels per day)

U.S (50states)

OECD(1)

North sea(2)

OPEC(3)

OPEC(4)

world

15.04 14.92 14.74 15.10 15.04 15.01 14.75 14.71 15.06 14.83 15.00 14.80 14.86 14.46

26.78 26.66 26.19 26.56 26.65 26.57 26.59 26.54 26.93 26..37 25.76 25.88 26.55 26.33

2.99 2.90 2.86 2.86 2.85 2.83 2.83 2.81 3.22 3.25 3.15 2.92 3.28 3.24

37.73 37.71 37.77 38.66 38.73 38.61 38.42 38.17 38.34 39.03 39.06 39.06 39.60 39.55

35.93 35.98 36.01 36.91 36.96 36.38 36.73 36.01 36.56 37.26 37.26 37.79 37.74 37.73

96.49 96.54 95.98 96.27 95.96 95.63 95.66 95.29 95.39 95.71 95.53 96.15 96.65 96.90

July 2015 August September October November December Jan.2016 February March April May June July August Source EIA

* «Oil Supply» is defined as the production of crude oil (including lease condensate) Natural gas plant liquids, and other liquids, and refinery processing gain. NA = no data available (1) OECD = Organization for Economic Cooperation and Development: Australia, Austria, Belgium, Canada, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, Luxembourg, Mexico, the Netherlands, New Zealand, Norway, Poland, Portugal, Slovakia,South Korea, Spain, Sweden, Switzerland, Turkey, the United Kingdom, and the United States. (2) North Sea includes offshore supply from Denmark, Germany, the Netherlands, Norway, and the United Kingdom (3) OPEC = Organization of Petroleum Exporting Countries: Algeria, Angola, Ecuador, Iran, Iraq, Kuwait, Libya, Nigeria, Qatar, Saudi Arabia, the United Arab Emirates, and Venezuela. (4) OPEC = Organization of Petroleum Exporting Countries doesn’t include Angola.

58 Petroleum Today - November

2016


Table Table (2) (2) World World Proved Proved Crude Crude Oil Oil Reserves, Reserves, January January 1, 2009 1, 2009 - January - January 1, 2014 1, 2014 Estimates Estimates

Region Region

2009 2009

2010 2010

North North America America

209.910 209.910

206.3 206.3

122.69 Central Central & South & South America America 122.69

2011 2011

2012 2012

2013 2013

2014 2014

208.901 208.901 210.52833 210.52833

216.77 216.77

219.8 219.8

124.64 124.64

237.11 237.11

238.82 238.82

326.00 326.00

328.00 328.00

Europe Europe

13.66 13.66

13.31 13.31

12.08 12.08

11.88 11.88

12.02 12.02

12.28 12.28

Eurasia Eurasia

98.89 98.89

98.89 98.89

98.89 98.89

98.89 98.89

118.80 118.80

118.80 118.80

Middle Middle East East

746.00 746.00

753.36 753.36

752.92 752.92

799.61 799.61

802.00 802.00

803.60 803.60

Africa Africa

117.06 117.06

119.11 119.11

123.61 123.61

124.21 124.21

127.70 127.70

126.70 126.70

Asia Asia & Oceania & Oceania World World Total Total

34.01 34.01 1,342.21 1,342.21

40.14 40.14 1355.74 1355.74

40.25 40.25 1473.76 1473.76

45.36 45.36 1525.96 1525.96

45.30 45.30 1648.80 1648.80

46.00 46.00 1655.50 1655.50

Source Source EIAEIA

Table Table (3) (3) World World crude crude oil production. oil production. ( Million ( Million Barrels Barrels Per Per dayday ) )

Jan.2015 July -15 February August March September April October November May June December July Jan.2016 August February September March October April November May December June Jan.2016 July February August

Libya Libya Sudan Sudan

Egypt Egypt OPEC(1) OPEC(1)

0.35 0.40 0.36 0.36 0.48 0.36 0.51 0.42 0.37 0.38 0.35 0.37 0.40 0.37 0.36 0.36 0.36 0.32 0.42 0.33 0.38 0.29 0.37 0.33 0.37 0.31 0.36 0.25

0.64 0.73 0.64 0.71 0.64 0.71 0.72 0.70 0.71 0.70 0.71 0.70 0.73 0.70 0.71 0.70 0.71 0.70 0.70 0.69 0.70 0.69 0.70 0.69 0.70 0.69 0.70 0.69

0.25 0.26 0.25 0.26 0.25 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26

32.18 38.80 30.48 38.71 30.72 38.80 30.99 38.67 30.78 38.68 30.74 38.45 32.53 38.50 32.40 38.37 32.55 38.34 31.91 39.03 31.96 39.06 31.82 39.60 31.93 39.55 31.79 39.55

Persian Persian North North World World Gulf(2) Gulf(2) Sea(3) Sea(3) 21.78 23.18 2.63 2.90 73.75 71.68 22.45 23.16 2.75 2.90 73.77 71.81 21.90 23.08 2.77 2.86 74.01 71.22 22.57 23.03 2.86 2.86 70.59 75.68 22.59 23.13 2.77 2.85 70.82 75.78 22.60 23.03 2.69 2.83 70.74 75.51 23.18 23.10 2.90 2.84 71.68 75.75 23.16 23.00 2.90 2.81 71.81 75.46 23.08 23.06 2.86 3.22 71.22 75.16 23.03 23.58 2.86 3.25 75.68 75.94 23.13 23.96 2.85 3.15 75.78 76.16 23.03 24.35 2.83 2.92 75.51 76.06 23.10 24.45 2.84 3.28 75.75 76.24 23.00 24.46 2.81 3.24 75.46 76.18

Source Source EIAEIA 1 OPEC: 1 OPEC: Organization Organization of the of the Petroleum Petroleum Exporting Exporting Countries: Countries: Algeria, Algeria, Angola, Angola, Ecuador, Ecuador, Indonesia, Indonesia, Iran,Iran, Iraq,Iraq, Kuwait, Kuwait, Libya, Libya, Nigeria, Nigeria, Qatar, Qatar, Saudi Saudi Arabia, Arabia, the the United United Arab Arab Emirates, Emirates, andand Venezuela. Venezuela. 2 The 2 The Persian Persian GulfGulf countries countries are are Bahrain, Bahrain, Iran,Iran, Iraq,Iraq, Kuwait, Kuwait, Qatar, Qatar, Saudi Saudi Arabia, Arabia, andand the the United United Arab Arab Emirates. Emirates. Production Production from from the the Kuwait-Saudi Kuwait-Saudi Arabia Arabia Neutral Neutral Zone Zone is included is included in Persian in Persian GulfGulf production. production. 3 North 3 North SeaSea includes includes the the United United Kingdom Kingdom Offshore, Offshore, Norway, Norway, Denmark, Denmark, Netherlands Netherlands Offshore, Offshore, andand Germany Germany Offshore. Offshore.

Petroleum Today - November

2016

59


Table (4) International petroleum consumption Million Barrels Per Day

July-15 August September October November December Jan.2016 February March April May June July August

OECD(1)

U.S (50 States)

Canada

Europe

Japan

46.47 46.04 46.34 46.52 46.57 46.84 45.92 47.02 46.99 45.64 45.01 46.34 46.55 46.47

19.98 19.70 19.32 19.35 19.23 19.23 18.82 19.01 19.62 19.26 19.20 19.83 19.90 19.99

2.42 2.46 2.42 2.39 2.43 2.40 2.33 2.39 2.27 2.16 2.24 2.33 2.34 2.38

13.68 13.40 14.18 14.24 13.85 13.48 13.40 13.83 13.97 13.48 13.24 13.74 13.87 13.57

3.87 3.88 3.90 3.92 4.23 4.70 4.52 4.71 4.44 4.04 3.61 3.74 3.81 3.82

NonOECD

China

48.24 48.10 48.48 47.79 47.87 47.24 45.86 46.72 47.56 49.16 49.03 49.69 49.72 49.46

11.27 11.20 11.49 11.22 11.46 11.13 11.20 11.00 11.21 11.94 11.76 11.91 11.72 11.65

Other Non World -OECD 19.39 19.45 19.45 18.83 18.54 18.23 17.94 18.14 18.07 18.70 19.09 19.42 19.71 19.66

94.71 94.14 94.82 94.31 94.44 94.08 92.28 94.17 94.55 94.80 94.31 96.03 96.26 95.93

Source EIA (1) OECD = Organization for Economic Cooperation and Development: Australia, Austria, Belgium, Canada, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, Luxembourg, Mexico, the Netherlands, New Zealand, Norway, Poland, Portugal, Slovakia, South Korea, Spain, Sweden, Switzerland, Turkey, the United Kingdom, and the United States.

Table (5) World Natural Gas Plant Liquid Production , Thousand Barrels Per Day

Saudi

January.14 February March April May June July August September October November December January.15

Algeria 356 352 355 355 350 354 369 370 378 380 360 369 360

Canada 643 620 688 760 712 719 700 691 694 699 630 700 750

Mexico 354 328 329 330 320 318 330 335 334 333 335 330 350

Arabia 1,519 1,601 1,606 1,625 1,620 1,619 1,650 1,661 1,645 1,678 1,601 1,650 1,640

Russia 444 439 452 448 445 444 450 455 458 459 480 450 450

United

Persian

States1 2,038 2,175 2,395 2,388 2,390 2,385 2,410 2,419 2,398 2,401 2,175 2,410 2,409

Gulf 2 2,544 2,670 2,695 2,696 2,690 2,692 2,700 2,703 2,705 2,701 2,670 2,700 2,712

OAPEC3 OPEC4 3,058 3,280 3,112 3,275 3,249 3,335 3,121 3,414 3,014 3,420 3,111 3,415 3,115 3,424 3,115 3,428 3,120 3,425 3,121 3,427 3,112 3,275 3,115 3,424 3,151 3,455

World 8,326 8,519 8,386 8,395 8,390 8,395 8,402 8,404 8,407 8,408 8,574 8,457 8,526

Source EIA 1 U.S. geographic coverage is the 50 states and the District of Columbia. Excludes fuel ethanol blended into finished motor gasoline. 2 The Persian Gulf countries are Bahrain, Iran, Iraq, Kuwait, Qatar, Saudi Arabia, and the United Arab Emirates. 3 OAPEC: Organization of Arab Petroleum Exporting Countries: Algeria, Bahrain, Egypt, Iraq, Kuwait, Libya, Qatar, Saudi Arabi Arabia Syria, Tunisia, and the United Arab Emerates Emirates 4 OPEC: Organization of the Petroleum Exporting Countries: Algeria, Angola, Ecuador, Indonesia, Iran, Iraq, Kuwait, Libya, Nigeria, Qatar, Saudi Arabia, the United Arab Emirates, and Venezuela.

60 Petroleum Today - November

2016


Source EIA

Fig. (1) World Crude Oil Prices US $ per BBL

Table (6) Egypt Rig Count per Area April-16

May-16

June-16

July-16

August-16

Gulf of Suez

13

12

10

11

10

Mediterranean Sea

4

5

5

5

5

29 10 3 7 66

27 10 4 6 64

30 10 4 6 65

36 10 4 7 73

37 10 5 6 73

Western Desert Sinai Eastern Desert Delta Total Fig. (2) Natural Gas Prices US $ Per MMBTU

Source EIA

Source Petroleum Today

Egypt Suez Blend Price (Dollars per Barrel) based on 33O API

Petroleum Today - November

2016

61


‫‪7‬‬ ‫‪7‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫‪7‬‬ ‫‪5‬‬ ‫‪4‬‬ ‫‪54 5 49 4 5 95 3 4 5‬‬ ‫‪4‬‬ ‫‪1‬‬ ‫‪9‬‬ ‫‪1‬‬ ‫‪5‬‬ ‫‪2 87 4 2 87 4 2 8 41 2‬‬ ‫‪7‬‬

‫‪1‬‬

‫‪3‬‬

‫‪2‬‬ ‫‪6‬‬ ‫‪10 5 3‬‬ ‫‪6 9‬عجيبة ‪2‬‬ ‫‪7‬‬

‫تاأ�ش�ش ��ت عام ‪ 1981‬ك�شرك ��ة ت�شغيل وعملي ��ات‬ ‫تابعة‪3‬‬ ‫للهيئ ��ة امل�شري ��ة العامة للبرتول‪ .‬وعل ��ى مدار خم�شة‬

‫‪2 6 10 9 6‬‬ ‫‪3‬‬ ‫‪10‬‬ ‫‪2‬‬

‫وع�ش ��رون عام ��ا اأ�ش�ش ��ت ال�شرك ��ة �شمعته ��ا ك�شرك ��ة‬ ‫م�شاهم ��ة للحفر واالإ�شتك�شاف واإنت ��اج البرتول والغاز‬ ‫يف م�ش ��ر‪ .‬وب ��داأت ال�شرك ��ة اإنتاجها الدائ ��م للبرتول‬ ‫والغاز يف اأكتوبر ‪.1986‬‬ ‫ارتف ��ع االنت ��اج اليومى خال ه ��ذا العام م ��ن الزيت‬ ‫اخلام اإىل حواىل ‪ 63‬األف برميل مت حفر ‪ 35‬بئر ًا منها‬ ‫‪ 4‬اآبار ا�شتك�شافية وتنفيذ ‪ 166‬عملية �شيانة اآبار ‪.‬‬

‫‪2 6‬‬ ‫‪10‬‬

‫‪2‬‬ ‫‪6‬‬ ‫‪10 5 3‬‬ ‫‪9‬‬ ‫‪2‬‬ ‫‪6‬‬ ‫‪7‬‬

‫بدر الدين‬

‫يوا�شل العامل ��ني بال�شركة جهوده ��م لتطوير اآليات‬ ‫العم ��ل ب�ش ��ورة م�شتم ��رة مم ��ا اأدى اإىل موا�شل ��ة‬ ‫زيادة متو�شط معدالت االإنتاج خال الثاث �شنوات‬ ‫املا�شي ��ة وو�ش ��ول االإنتاج احل ��اىل اإىل ‪ 138.5‬األف‬ ‫برميل مكاف ��ئ يوم ًيا‪ ،‬منه ��ا ‪ 498‬مليون قدم مكعب‬ ‫غاز طبيع ��ى يوم ًيا‪ ،‬ونحو ‪ 50‬األ ��ف برميل زيت خام‬ ‫ومتكثف ��ات يوم ًيا نتيج ��ة دخول اآب ��ار تنموية جديدة‬ ‫عل ��ى االإنت ��اج وااللت ��زام بتطبي ��ق معاي ��ري االأم ��ن‬ ‫وال�شامة وال�شحة املهنية على املعدات واالأفراد مع‬ ‫مراعاة تطبيق قواعد االإنفاق الر�شيد‪.‬‬

‫‪6‬‬ ‫‪9 3‬‬ ‫‪2‬‬

‫بدئ ��ت ال�شرك ��ة ف ��ى م�شروع اإنت ��اج الغ ��از امل�شاحب‬ ‫للزي ��ت مبنطق ��ة امتي ��از مليحة خ ��ال الع ��ام املاىل‬ ‫احل ��اىل وكذلك مت ت�شليم ‪ 189‬مليون قدم مكعب غاز‬ ‫من امل�شروع اإىل جممع غازات ال�شحراء الغربية‪.‬‬ ‫جنحت عجيب ��ة فى تنمية طبقة علم البويب فى حقل‬ ‫مليح ��ة باإ�شافة ‪ 5‬اآبار اإنتاجي ��ة وكذلك تنمية طبقات‬ ‫عل ��م البويب وراأ�س قط ��ارة فى حق ��ل روزا �شمال اإىل‬ ‫جانب عدد م ��ن اجلهود التنموية ف ��ى مناطق االإنتاج‬ ‫املختلفة اأدت لزيادة معدالت االإنتاج‪.‬‬

‫حف ��رت ال�شرك ��ة خ ��ال الع ��ام ‪ 28‬بئ� � ًرا تنموي ��ة‬ ‫وا�شتك�شافية‪ ،‬كما مت اإجراء بع�س التعديات خلطوط‬ ‫االإنت ��اج باملحط ��ات وزي ��ادة �شعة ال�شح ��ن يف منطقة‬ ‫ني ��اج‪ ،‬وتعظي ��م االإنت ��اج من خال وح ��دة حمطة نزع‬ ‫ثان ��ى اأك�شيد الكرب ��ون ببدر‪ ،‬وحت�شني اإنت ��اج الغاز يف‬ ‫حق ��ل االأبي� ��س‪ ،‬وكذلك تطوي ��ر اإنتاجية اآب ��ار منطقة‬ ‫�ش ��رتا مبا �شاهم يف اإ�شافة ‪ 30‬مليون قدم مكعب غاز‬ ‫يوم ًيا اإىل اإنتاجها الطبيعى‪.‬‬ ‫كم ��ا �شاهمت عمليات تطوير اآب ��ار االأبي�س يف اإ�شافة‬ ‫‪ 60‬ملي ��ون ق ��دم مكع ��ب يوم ًي ��ا لاإنت ��اج‪ ،‬واأن خط ��ة‬

‫‪10‬‬

‫‪3‬‬

‫‪2‬‬ ‫‪6‬‬ ‫‪10 5 3‬‬ ‫‪9‬‬ ‫‪2‬‬ ‫‪6‬‬ ‫‪7‬‬

‫‪2 6‬‬ ‫‪10‬‬

‫‪6‬‬ ‫‪9 3‬‬ ‫‪2‬‬

‫كم ��ا مت الب ��دء ف ��ى الدرا�ش ��ات الهند�شي ��ة املبدئية‬ ‫الإن�شاء حمط ��ة ملعاجلة الغاز امل�شاح ��ب للزيت ب�شعة‬ ‫‪ 100‬مليون قدم مكعب يومي ًا ودرا�شة طرق رفع كفاءة‬ ‫خ ��ط نقل الغاز ال�شم ��اىل بال�شح ��راء الغربية كذلك‬ ‫مت االنته ��اء م ��ن اإعادة معاجل ��ة البيان ��ات ال�شيزمية‬ ‫ملنطقة مليحة وه ��و مينحها املزيد من الدقة خلرائط‬ ‫الرتاكي ��ب اجليولوجي ��ة ويوؤث ��ر باالإيج ��اب على ن�شب‬ ‫جناح عمليات احلفر اال�شتك�شافى ‪.‬‬

‫جناح ��ا ملحوظ ًا‬ ‫حف ��ر االآب ��ار اال�شتك�شافي ��ة اأظهرت ً‬ ‫بن�شب ��ة ‪ ،%75‬واأن البئ ��ر اال�شتك�شاف ��ى ‪ BTE-2‬حقق‬ ‫نتائج ��ا م�شجع ��ة‪ ،‬ويع ��د اأك ��رب ك�ش ��ف لب ��در الدي ��ن‪،‬‬ ‫ً‬ ‫حمق ًق ��ا احتياط ��ي ‪ 500‬مليار قدم مكع ��ب‪ ،‬واأن البئر‬ ‫نتائجا م�شجعة‬ ‫اال�شتك�شافى ‪ BED-2SW-1‬اأظه ��ر ً‬ ‫للغاية يف طبقات اأبو روا�س �شرق وبحرية‪ ،‬كما حققت‬ ‫ال�شرك ��ة وف� � ًرا يف النفقات بلغ ‪ 100‬ملي ��ون دوالر دون‬ ‫التاأثري على برامج العمل‪.‬‬

‫الشركة العامة للبترول‬

‫تعترب ال�شركة الوحيدة اململوك ��ة بالكامل للدولة‪ ،‬وتعمل‬ ‫فى جم ��ال ا�شتك�ش ��اف واإنتاج الب ��رتول والغ ��از لتطوير‬ ‫اآلي ��ات عمله ��ا وحتديثه ��ا ب�شف ��ة م�شتمرة‪.‬واأح ��د اأهم‬ ‫ال�ش ��روح الوطني ��ة املتمي ��زة العاملة فى جم ��ال البحث‬ ‫والتنقي ��ب ع ��ن ال ��رثوات الطبيعي ��ة والت ��ى لديه ��ا م ��ن‬ ‫االإمكانيات واخلربات ما يوؤهلها لتحقيق جناحات اأكرب‪.‬‬ ‫حقق ��ت ال�شرك ��ة خ ��ال ه ��ذا الع ��ام اأعل ��ى مع ��دل‬ ‫الإنتاجه ��ا م ��ن الزيت اخل ��ام والغ ��از واملتكثفات من‬ ‫حقوله ��ا ون�شيبه ��ا م ��ن اإنت ��اج ال�ش ��ركات امل�شاركة‬ ‫وال ��ذى بلغ ح ��واىل ‪ 82.2‬األ ��ف برميل زي ��ت مكافئ‬ ‫يومي� � ًا‪ ،‬وحقق ��ت ال�شركة عدد م ��ن االإكت�شافات كان‬ ‫م ��ن اأهمه ��ا الك�ش ��ف املمي ��ز ‪� NES‬شم ��ال �ش ��رق‬

‫اأبو�شن ��ان بال�شح ��راء الغربية ال ��ذى مت و�شعه على‬ ‫االإنت ��اج مبعدل ‪ 3800‬برميل زي ��ت و‪ 1.5‬مليون قدم‬ ‫مكعب غ ��از يومي ًا‪ ،‬والذى �شاهم ف ��ى زيادة معدالت‬ ‫اإنت ��اج الزيت اخل ��ام من ال�شح ��راء الغربية وك�شف‬ ‫خزان ��ات الباعي ��م والرودي�س بحقل ع� ��س املاحة‬ ‫بال�شحراء ال�شرقي ��ة مبعدل اإنتاج يومى ‪ 800‬برميل‬ ‫زي ��ت ‪ ،‬وك�شف ‪ 5A/ HH-83‬بحق ��ل �شمال عامر‬ ‫البحرى بخليج ال�شوي�س الذى يبلغ اإجماىل احتياطيه‬ ‫املوؤكد حواىل ‪ 6.5‬مليار قدم مكعب غاز‪.‬‬ ‫ق��ام��ت ال���ش��رك��ة ب�ح�ف��ر ‪ 23‬ب �ئ��ر ًا ج��دي��دة م��ا بني‬ ‫ا�شتك�شافية وتقييمية وتنموية‪� ،‬شاهمت فى النجاح‬ ‫باإ�شافة احتياطيات جديدة تقدر بحواىل ‪10.9‬‬

‫مليون برميل مكافئ‪ ،‬كما تو�شعت ال�شركة فى‬ ‫اتفاقيات اخلدمات اال�شتك�شافية واالإنتاجية مع عدد‬ ‫من ال�شركات العاملية والعربية منها كويت اإنرجى ‪.‬‬ ‫وتنام ��ى حج ��م اال�شتثم ��ارات املنفذة خ ��ال العام‬ ‫لي�ش ��ل اإىل مليار جنيه ويع ��د اأعلى معدل لا�شتثمار‬ ‫بال�شرك ��ة‪ ،‬مم ��ا يوؤكد توا�ش ��ل وتكثي ��ف تنفيذ خطة‬ ‫التنمية ال�شاملة واجلارى ا�شتكمالها‪.‬‬ ‫‪2016‬‬

‫‪17 Petroleum Today - November‬‬

‫‪0‬‬


‫‪7‬‬ ‫‪7‬‬ ‫‪3‬‬ ‫‪10‬‬ ‫‪1010‬‬ ‫‪5‬‬ ‫‪4‬‬ ‫‪5‬‬ ‫‪4‬‬ ‫‪9‬‬ ‫‪7‬‬ ‫‪7‬‬ ‫‪7‬‬ ‫‪7‬‬ ‫‪7‬‬ ‫‪1‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫‪7‬‬ ‫‪3‬‬ ‫‪5‬‬ ‫‪5‬‬ ‫‪4‬‬ ‫‪4‬‬ ‫‪5‬‬ ‫‪4‬‬ ‫‪2‬‬ ‫‪499 44 55 99 8 7 4 4 5‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪2 874‬‬ ‫‪22887744‬‬

‫‪6 52 3‬‬ ‫‪2‬‬ ‫‪6 9‬‬ ‫بتروبل‬

‫‪2 6‬‬ ‫‪10‬‬

‫‪6‬‬ ‫‪9 3‬‬ ‫‪2‬‬

‫‪9‬‬ ‫‪6‬‬

‫‪2 63‬‬ ‫‪10 10‬‬

‫تاأ�ش�ش���ت ك�شركة م�شاهمة م�شرية بني كل من‬ ‫الهيئ���ة امل�شرية العامة للب���رتول و�شركة اأيوك‬ ‫ الدولي���ة للزي���ت امل�شري وهي ثم���رة تعاون‬‫م�ش���رتك بداأ من���ذ اخلم�شينات ب���ني حكومتى‬ ‫جمهوري���ة م�شر العربي���ة واحلكومة االإيطالية‬ ‫الإدارة حق���ول الزي���ت ب�شين���اء وحق���ول الغ���از‬ ‫الطبيع���ي باأبو ما�ش���ي‪ .‬وكان ن�ش���اط ال�شركة‬ ‫قد بداأ عام ‪ 1953‬حت���ت ا�شم ال�شركة االأهلية‬ ‫للب���رتول والت���ي عدل���ت يف ع���ام ‪ 1957‬اإىل‬ ‫ال�شرك���ة ال�شرقي���ة للبرتول ثم اأخ���ذت ا�شمها‬ ‫احلايل �شركة برتول باعيم يف عام ‪.1978‬‬ ‫ت�شع���ى ال�شرك���ة ب�ش���كل م�شتم���ر لزي���ادة‬ ‫االحتياطي���ات واالإنت���اج م���ن الزي���ت والغ���از ‪،‬‬ ‫ويت�ش���ح ذل���ك م���ن موؤ�ش���رات االأداء ونتائ���ج‬ ‫االأعم���ال الت���ى حتقق���ت خ���ال الع���ام املاىل‬ ‫‪ 2015/2016‬حي���ث تق���وم ال�شرك���ة باأعم���ال‬ ‫تنمي���ة حقل���ى نيدوك���و وجن���وب غ���رب بلطيم‬ ‫واأو�ش���ح اأن اإجماىل االإنتاج احلاىل من الزيت‬

‫‪2‬‬

‫‪6 65 52 23 3‬‬ ‫‪3 10‬‬ ‫‪9‬‬ ‫‪6‬‬ ‫‪22 66 9‬‬ ‫‪9 3‬‬ ‫‪2‬‬

‫والغ���از الطبيعي واملتكثفات على م�شتوى جميع‬ ‫حق���ول برتوب���ل و�ش���ل اإىل ح���واىل ‪ 293‬األ���ف‬ ‫برمي���ل زي���ت مكافئ يومي ًا ت�شم���ل ‪ 86.5‬األف‬ ‫برمي���ل زيت خام واأكرث من ملي���ار قدم مكعب‬ ‫غ���از و ‪ 11.7‬األف برمي���ل متكثفات و‪ 324‬طن‬ ‫بوتاج���از وهو ما ميثل اإجن���از ًا يح�شب للكوادر‬ ‫البرتولية املدربة ‪.‬‬ ‫مت �ش���خ ا�شتثم���ارات �شخم���ة يف جم���ال‬ ‫اال�شتك�ش���اف والتنمي���ة والت�شغيل حلقول الغاز‬ ‫والزيت خال العام املاىل املا�شى بلغت حواىل‬ ‫‪ 948‬مليون دوالر منها حواىل‪ 426‬مليون دوالر‬ ‫الأعمال تنمية احلق���ول ‪،‬واثمرت جهود تر�شيد‬ ‫االإنفاق فى تخفي����س التكلفة امل�شتهدفة الإنتاج‬ ‫الربمي���ل املكاف���ئ من الزيت بنح���و ‪5‬ر‪ %3‬عن‬ ‫القيمة املخططة‪.‬‬ ‫يرجع حتقيق ال�شركة لهذا امل�شتوى من االإنتاج‬ ‫اإىل �شرعة تنمية حقول الزيت الربية والبحرية‬ ‫بحق���ول برتوب���ل بخلي���ج ال�شوي�س وو�ش���ع اآبار‬

‫‪1010 6‬‬ ‫‪9 9 3 63 2 6‬‬ ‫‪2 6‬‬ ‫‪6 2‬‬ ‫‪10‬‬ ‫‪10‬‬ ‫‪2‬‬

‫جدي���دة على االإنت���اج وخطط طموح���ة لتنمية‬ ‫الطبق���ات غري التقليدي���ة باالإ�شافة اإىل تقليل‬ ‫فرتة توقف االآبار عن االإنتاج لعمل ال�شيانة ‪.‬‬ ‫حفرت ال�شركة ‪ 27‬بئر ًا خال العام املاىل بتكلفة‬ ‫اإجمالية بلغت حواىل ‪ 159‬مليون دوالر‪ ،‬باالإ�شافة‬ ‫اإىل اإجراء حواىل ‪ 251‬عملية �شيانة لاآبار بتكلفة‬ ‫اإجمالي ��ة بلغ ��ت‪ 123‬ملي ��ون دوالر ونتيج ��ة له ��ذا‬ ‫الن�ش ��اط الهائل جنحت برتوبل ف ��ى اإنتاج حواىل‬ ‫‪ 7.7‬مليون برميل خال العام املا�شى‪.‬‬ ‫كم����ا اأن خط����ط اال�شتك�ش����اف والتنمية اأدت‬ ‫لزيادة االحتياطيات القابلة لاإنتاج بحواىل‬ ‫‪ 5.8‬ملي����ون برمي����ل زيت خ����ام و‪ 835‬مليار‬ ‫قدم مكعب غاز وح����واىل ‪ 6.5‬مليون برميل‬ ‫من املتكثف����ات باالإ�شافة اإىل اأكرث من مليون‬ ‫طن بوتاجاز‪.‬‬

‫جابكو‬ ‫تاأ�ش�ش ��ت ع ��ام ‪ 1965‬ك�شركة م�شاهم ��ة م�شرية‪،‬‬ ‫وتعد من اأقدم ال�شركات امل�شرية العاملة يف جمال‬ ‫البرتول يف م�شر وحتتل مكانة كبرية لدى العاملني‬ ‫فى قطاع البرتول فى م�شر‬ ‫تظه ��ر نتائج اأعمال ال�شرك ��ة ان االنتاج بلغ ‪76.5‬‬ ‫األف برميل من الزيت اخلام يومي ًا واأ�شافت ‪10.4‬‬ ‫ملي ��ون برميل زيت و ‪ 18.5‬ملي ��ار قدم مكعب غاز‬ ‫لاحتياط ��ى املوؤك ��د ‪ ،‬و ا�شتطاع ��ت حف ��ر ‪ 15‬بئر ًا‬ ‫جديدة وو�شعها على االإنت ��اج مبعدالت اإنتاج يومى‬ ‫اأولية تقدر بح ��واىل ‪ 14‬األف برميل زيت ‪ ،‬وجنحت‬ ‫ف ��ى االإنت ��اج م ��ن طبق ��ة الرودي� ��س فى حق ��ل ادفو‬ ‫واالإنت ��اج من طبق ��ة الباعيم الأول م ��رة وذلك فى‬ ‫حقل �ش ��رق بدرى ‪ ،‬كما جنح ��ت جابكو فى تركيب‬ ‫املن�ش ��ة البحرية اجلديدة ه ��ال ‪ ،‬مما اأ�شفر عن‬ ‫االنتهاء م ��ن حفر ‪ 3‬اآبار جدي ��دة مبعدالت ‪ 4‬اآالف‬ ‫‪16‬‬

‫‪2016‬‬

‫‪Petroleum Today - November‬‬

‫برميل يومي ًا وزيادة االإنتاج من منطقة طور �شيناء‪.‬‬ ‫وتخط ��ط جابك ��و للنهو�س مبع ��دالت االإنتاج من‬ ‫خال تطبيق التقني ��ات احلديثة لزيادة معدالت‬ ‫اال�شرتجاع وكذل ��ك تنمية االإنت ��اج من الطبقات‬ ‫اجلديدة با�شتخ ��دام التقنيات اجلديدة فى هذا‬ ‫املج ��ال ‪،‬وتعم ��ل ال�شركة على تنمي ��ة حقل هال‬ ‫بحف ��ر بئري ��ن اإ�شافي ��ني وتنمي ��ة حق ��ل �شق ��ارة‬ ‫م ��ن خال العم ��ل على اإكم ��ال بئرين ف ��ى طبقة‬ ‫الن ��زازات وحف ��ر بئر جدي ��دة فى طبق ��ة النوبيا‬ ‫وكذلك التخطي ��ط لتنمية حقل اأكتوبر با�شتكمال‬ ‫اأعم ��ال التنمي ��ة ف ��ى طبق ��ة الن ��زازات واإ�شاح‬ ‫بئري ��ن وتنمية حق ��ل يولي ��و بحفر بئ ��ر جديدة ‪،‬‬ ‫باالإ�شاف ��ة مل ��ا يتم العم ��ل عليه حالي ًا م ��ن زيادة‬ ‫مناطق امتياز جديدة ك�شمال وجنوب �شفا بحقل‬ ‫رم�ش ��ان وو�شع خطط م�شتقبلي ��ة لتنمية طبقات‬

‫‪3‬‬

‫(‪ )Baba&Sidri‬فى حقلى املرجان وبدرى ‪.‬‬ ‫ا�شتطاع ��ت ال�شركة با�شتخ ��دام �شيا�شة ر�شيدة‬ ‫الو�ش ��ول اإىل توف ��ري ف ��ى النفق ��ات يتخطى ‪125‬‬ ‫ملي ��ون دوالر عل ��ى مدار العام امل ��اىل املا�شى من‬ ‫خ ��ال املفاو�ش ��ات امل�شتم ��رة لعق ��ود ال�ش ��ركات‬ ‫واملقاول ��ني وتوف ��ري ف ��ى امل�شرتي ��ات م ��ن خ ��ال‬ ‫التخفي�ش ��ات واملفاو�ش ��ات امل�شتم ��رة واملراجعة‬ ‫ال�شامل ��ة للح ��د االأدن ��ى واالأق�ش ��ى م ��ن امل ��واد‬ ‫املوج ��ودة فى املخازن واال�شتخدام االأمثل للموارد‬ ‫املوجودة وتوفري وقت اأجهزة احلفر لعمل االأعمال‬ ‫املتزامنة والتوفري ف ��ى نفقات امل�شروعات واإعادة‬ ‫تاأهيل املن�شات البحرية‪.‬‬


‫‪7‬‬ ‫‪7‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫‪7‬‬ ‫‪5‬‬ ‫‪4‬‬ ‫باألرقــــــــام ‪54 5 49..‬‬ ‫‪3‬‬ ‫‪5‬‬ ‫‪5‬‬ ‫‪5‬‬ ‫‪4‬‬ ‫‪4‬‬ ‫‪9‬‬ ‫‪4‬‬ ‫‪1‬‬ ‫‪9‬‬ ‫‪1‬‬ ‫‪5‬‬ ‫‪2 87 4 2 87 4 2 8 41 2‬‬ ‫‪7‬‬

‫‪1‬‬

‫‪3‬‬

‫‪2‬‬ ‫‪6‬‬ ‫‪10 5 3‬‬ ‫‪9‬‬ ‫‪2‬‬ ‫‪6‬‬ ‫‪7‬‬

‫‪2 6‬‬ ‫‪10‬‬

‫‪2‬‬ ‫‪6‬‬ ‫‪10 5 3‬‬ ‫‪9‬‬ ‫‪2‬‬ ‫‪6‬‬ ‫‪7‬‬

‫‪10‬‬

‫‪3‬‬

‫‪2‬‬ ‫‪6‬‬ ‫‪10 5 3‬‬ ‫‪9‬‬ ‫‪2‬‬ ‫‪6‬‬ ‫‪7‬‬

‫‪6‬‬ ‫‪9‬‬ ‫‪10‬‬ ‫‪3‬‬ ‫‪6‬‬ ‫‪6‬‬ ‫‪2‬‬ ‫‪6‬‬ ‫ومشروعات‪2‬‬ ‫تعرف على نتائج أعمال‬ ‫‪9‬‬ ‫‪ 3‬أكبر ‪10‬‬ ‫شركات االنتاج ‪2‬المصرية‪10‬‬ ‫‪2‬‬ ‫‪3‬‬

‫‪6‬‬ ‫‪9 3‬‬ ‫‪2‬‬

‫فيما يعكس ثقة المستثمر االجنبي في مناخ االقتصاد المصري عامة وقطاع الطاقة خاصة ‪,‬‬ ‫وبرغم انخفاض أسعار النفط العالمية خالل العام المالى ‪ 2016/2015‬واالحداث السياسية التي‬ ‫تشهدها مصر إال أن الشركاء األجانب أنفقوا ‪ 6.6‬مليار دوالر في عمليات البحث واالستكشاف‬ ‫والتنمية في مصر ‪.‬‬ ‫وفي ذات الســـياق يســـتهدف قطاع البترول المصري الوصول باســـتثمارات شـــركات النفط‬ ‫األجنبيـــة العاملـــة في البالد إلى حوالي ‪ 12.1‬مليار دوالر خالل الســـنة الماليـــة الحالية ‪2017-2016‬‬ ‫لسد حاجة الدولة من المنتجات البترولية في ارتفاع سعر الدوالر ‪.‬‬ ‫فى السطور القادمة ترصد مجلة ‪ Petroleum Today‬نتائج اعمال اكبر شركات االنتاج‬ ‫المصرية خالل العام المالى ‪2016/ 2015‬‬

‫خـــالدة‬ ‫اظه ��رت نتائج اعمال �شركة خال ��دة للبرتول للعام‬ ‫امل ��اىل ‪ 2016/ 2015‬و�ش ��ول ال�شرك ��ة اىل مع ��دل‬ ‫انت ��اج يومى ‪ 317‬ال ��ف برميل وبه ��ذا حتتل خالدة‬ ‫املرك ��ز االول النت ��اج الب ��رتول فى م�ش ��ر وتتخطى‬ ‫�شقيقتها �شركة برتوبل التى اظهرت نتائج اعمالها‬ ‫معدالت انت ��اج ت�شل اىل ‪ 293‬ال ��ف برميل مكافئ‬ ‫يوميا ‪.‬‬ ‫جنح ��ت خالدة ف ��ى حتقيق ‪ 7‬اكت�شاف ��ات مبناطق‬ ‫عمله ��ا بال�شح ��راء الغربي ��ة خ ��ال الع ��ام ‪ ،‬ومت‬ ‫حف ��ر ‪ 50‬بئ ��ر ًا و تنفي ��ذ ‪ 191‬عملية اع ��ادة اكمال‬ ‫لاآب ��ار فى اط ��ار اأن�شط ��ة تنمية احلق ��ول �شاهمت‬ ‫فى حتقي ��ق خطة اإنت ��اج الزيت اخل ��ام واملتكثفات‬ ‫مبع ��دل اإنتاج يوم ��ى بلغ ح ��واىل ‪ 153‬األ ��ف برميل‬ ‫م ��ن الزيت اخل ��ام واملتكثف ��ات ‪ ،‬اإىل جان ��ب انتاج‬ ‫‪ 840‬مليون قدم مكعب غ ��از يومي ًا لي�شجل اإجماىل‬

‫اإنتاج ال�شرك ��ة اليومى من الزيت اخلام واملتكثفات‬ ‫والغاز الطبيع ��ى حواىل ‪ 317‬األ ��ف برميل مكافىء‬ ‫يومي ًا ‪ ،‬مما ع ��زز االحتياطيات املوؤكدة من الرثوة‬ ‫البرتولية مبناطق خالدة بال�شحراء الغربية باأكرث‬ ‫من ‪ 51‬مليون برميل من الزيت اخلام واملتكثفات و‬ ‫‪ 118‬مليار قدم مكعب غاز ‪.‬‬ ‫وقامت �شرك ��ة اأبات�شى االأمريكية ال�شريك االأجنبى‬ ‫ب�شخ ا�شتثم ��ارات جديدة خال العام بلغت حواىل‬ ‫‪ 796‬ملي ��ون دوالر للبح ��ث واال�شتك�ش ��اف وتنمي ��ة‬ ‫احلقول والت�شغيل ‪.‬‬ ‫كم ��ا جنح ��ت ال�شركة ف ��ى االنته ��اء من ع ��دد من‬ ‫م�شروع ��ات تنمية احلق ��ول وفى مقدمته ��ا م�شروع‬ ‫حمط ��ة �شواغ ��ط حق ��ل غ ��از الق�ش ��ر بتكلف ��ة‬ ‫ا�شتثماري ��ة اأكرث من ‪ 310‬ملي ��ون دوالر ‪ ،‬و املرحلة‬ ‫االوىل م ��ن تنمية حقول غاز " هي ��درا " و م�شروع‬

‫تنمية حقول برتول " بتاح " و" برني�س" مما �شاهم‬ ‫فى دعم اخلطة الطموحة لزيادة االنتاج من الرثوة‬ ‫البرتولية‬ ‫وتق ��وم ال�شرك ��ة بتنفي ��ذ حزم ��ة م ��ن امل�شروعات‬ ‫اجلدي ��دة مث ��ل املرحل ��ة الثانية لتنمي ��ة حقول غاز‬ ‫هي ��درا التى او�شكت على االنته ��اء وجارى االعداد‬ ‫لتنفي ��ذ املرحل ��ة الثالث ��ة الإن�ش ��اء حمط ��ة �شواغط‬ ‫منطقت ��ى هيدرا وط ��ارق ‪ ،‬كم ��ا اأن ال�شركة ب�شدد‬ ‫االنته ��اء م ��ن حتدي ��ث حمط ��ة املعاجل ��ة املركزية‬ ‫و�شواغط الغاز فى كاب�شة واأبوالغراديق باالإ�شافة‬ ‫اإىل القي ��ام بالدرا�ش ��ات الازم ��ة لتطوي ��ر حمطة‬ ‫كهرباء حقول اأبوالغراديق ‪.‬‬

‫‪2016‬‬

‫‪15 Petroleum Today - November‬‬

‫‪0‬‬


‫حقل نور�س‬ ‫يع ��د حقل نور�س للغ ��از من االكت�سافات الت ��ى حققت زمن ��ا قيا�سيا‪ ،‬من حيث‬ ‫امل�ساهم ��ة ف ��ى زي ��ادة اإنتاج م�س ��ر املحلى من الغ ��از الطبيع ��ى‪ ،‬حيث و�سعت‬ ‫وزارة الب ��رتول خط ��ة عاجل ��ة لتنمية املنطق ��ة وو�سعها على االإنت ��اج فى اأ�سرع‬ ‫وق ��ت ممكن‪ ،‬من خال خطة حلفر ع ��دد من االآبار التنموي ��ة واال�ستك�سافية‪،‬‬ ‫باالإ�سافة ملد �سبكات االإنتاج الازمة ال�ستيعاب االإنتاج من املنطقة‪..‬‬ ‫يق ��ع حقل نور� ��س �سمال �سرق الدلت ��ا ويتبع �سركتى اين ��ى االيطالية ال�سريك‬ ‫االجنبى ل�سرك ��ة برتوبل و�سركة بي بي مت اكت�ساف احلقل فى يوليو ‪ 2015‬بعد‬ ‫حف ��ر البئ ��ر نيدوكو �سمال غ ��رب ‪ 23-‬مت و�س ��ع اآبار احلقل عل ��ى االإنتاج بعد‬ ‫�سهرين من االكت�ساف‬ ‫االحتياطى واالنتاج‬ ‫تق ��در االحتياطيات املوؤكدة للحقل بحواىل ‪ 2‬تريليون قدم مكعب من الغازومت‬ ‫حف ��ر ع ��دد ‪ 7‬اآبار تنموي ��ة لتنمية احلقل و بل ��غ االإنتاج اليومى م ��ن احلقل فى‬ ‫�سهر مايو احلاىل‪ 320‬مليون قدم مكعب يوميا‪ 3200 ،‬برميل متكثفات و تزايد‬

‫‪7‬‬ ‫‪59 435 49‬‬ ‫‪1‬‬ ‫‪2 874‬‬ ‫‪2‬‬ ‫‪6‬‬ ‫‪10 5 3‬‬ ‫‪9‬‬ ‫‪2‬‬ ‫‪6‬‬ ‫‪7‬‬ ‫‪6‬‬ ‫‪9 3‬‬ ‫‪2‬‬

‫االإنتاج م ��ن املنطقة ليبلغ ‪ 700‬مليون قدم مكعب يوميا تعادل ‪ 128‬األف برميل‬ ‫مكاف ��ئ‪ .8.‬يعترب نتيجة مبا�سرة الإعادة ت�سع ��ري الغاز باملنطقة حيث مت تعديل‬ ‫االتف ��اق على هام� ��س موؤمتر �سرم ال�سي ��خ االقت�سادى‪ ،‬وال ��ذى اأدى اإىل زيادة‬ ‫اإنتاج احلقل من �سفر اإىل اأكرث من ‪ 600‬مليون قدم مكعب يوميا حاليا ‪.‬‬

‫‪2 6‬‬ ‫‪10‬‬

‫املخطط للحقل‬ ‫ت�ستهدف �سركتى اينى وبي بي اأن ي�سل االإنتاج اإىل مليار قدم مع بداية العام‬ ‫الق ��ادم ‪ 2017‬وا�س ��ارت ال�سركت ��ن اإىل اأن ه ��ذا الك�سف �سيتطل ��ب املزيد من‬ ‫اأعم ��ال التقييم لتحديد احتياطياته االإجمالية وامل�سروع حتقق فى زمن قيا�سى‬ ‫حي ��ث مت حتقيق الك�سف وو�سعه على االنت ��اج وم�ساعفه االنتاج اليومى خال‬ ‫‪� 13‬سهرا فقط‬

‫‪bp & eni‬‬

‫حقل علم ال�صاوي�س (بي تي اإي – ‪)2‬‬ ‫جنح ��ت �سركة �سل يف حتقيق ك�سف للغاز مبنطقة «امتياز» �سمال علم ال�ساوي�س‬ ‫بال�سح ��راء الغربية وكانت وزارة البرتول‪ ،‬خ�س�ست حق ا�ستغال هذه املنطقة‬ ‫م ��ن القطاعات اال�ستك�سافية ل�سركة �سل يف ع ��ام ‪ ،2012‬ووقعت اتفاقية خا�سة‬ ‫بها يف نهاية ‪ ،2013‬بعد طرح املنطقة يف مناق�سة ل�سركات البرتول العاملية‪.‬‬ ‫االحتياطى‬ ‫اظه ��رت نتائج الك�سف اجلديد والذى مت فى بئر (بي تي اإي – ‪ ،)2‬اأن الكميات‬ ‫املبدئي ��ة املكت�سف ��ة تق ��در بنحو ن�سف تريلي ��ون قدم مكعب م ��ن الغاز (احلجم‬ ‫الكل ��ي للغاز قبل االإنتاج) مع مزيد من احتمال وج ��ود احتياطي اأكرث من الغاز‪،‬‬ ‫مب ��ا ي�سع هذا الك�سف بن اأك ��رب اكت�سافات الغاز الطبيعي يف ال�سحراء الغربية‬ ‫خال ال�سنوات املا�سية‪.‬‬ ‫ومتتل ��ك �سرك ��ة «�س ��ل» ح�س ��ة ‪ %100‬م ��ن ترخي� ��س‬ ‫املنطق ��ة الت ��ي ت�س ��م بئر (ب ��ي ت ��ي اإي ‪ )2-‬والتي من‬ ‫املتوق ��ع اأن تق ��وم �سركة ب ��در الدين ب� �اإدارة العمليات‬ ‫فيها‪ ،‬وقد مت حفر بئر (بي تي اإي ‪ )2-‬يف يونيو ‪2016‬‬ ‫بع ��د النج ��اح يف اخ ��رتاق منطقة حرجة م ��ن ال�سغط‬ ‫العايل يف اجلزء العلوي من البئر ب�سورة اآمنة‪.‬‬ ‫الك�س ��ف اجلدي ��د من �ساأن ��ه امل�ساهمة مب ��ا يقرب من‬

‫‪14‬‬

‫‪2016‬‬

‫‪Petroleum Today - November‬‬

‫‪ 10‬اإىل ‪ 15‬باملائ ��ة م ��ن االإنت ��اج الكلي ل�سركة بدر الدين للب ��رتول‪ ،‬وهي ال�سركة‬ ‫امل�سرتك ��ة القائم ��ة بعمليات االإنت ��اج بالنيابة ع ��ن �سركة �سل والهيئ ��ة امل�سرية‬ ‫العامة للبرتول‪.‬‬ ‫اهمية الك�صف‬ ‫تاأت ��ى اهمية الك�سف اجلدي ��د ل�سركة �سل لوجودة فى منطقة ال�سحراء الغربية‬ ‫حيث يرتكز معظم انتاج الغاز امل�سرى فى منطقة البحر املتو�سط والدلتا وهذا‬ ‫يفتح االمل لوجود كميات كبرية من الغاز فى منطقة واعدة جديدة‬ ‫اأم ��ا الك�سف فتم التو�سل اإليه عند عمق ‪ 5740‬مرت بتكوينات "خريطة" الرملية‬ ‫حي ��ث تاأك ��د وجود عمود من الغاز بطول ‪ 500‬مرت واأك ��رث من ‪ 100‬مرت من الغاز‬ ‫داخل خزانات من احلجر الرملي تت�سم بوجود م�سام‬ ‫جيدة ت�سمح با�ستخراج الغاز‪.‬‬ ‫يذك ��ر اأن ��ه ق ��د مت اإمتام عملي ��ات احلفر قب ��ل املوعد‬ ‫املخطط ل ��ه بينما ي�ستمر احلف ��ر ال�ستك�ساف مناطق‬ ‫اأعم ��ق من احلجر الرمل ��ي بتكوينات "خريطة" ت�سل‬ ‫اإىل اأك ��رث من ‪ 6000‬مرت‪ .‬و�سيت ��م تقدير كميات املواد‬ ‫الهيدروكربوني ��ة املتوقع ��ة بع ��د االنته ��اء م ��ن احلفر‬ ‫واالختبارات التي يتم اإجراوؤها على البئر‪.‬‬

‫‪10‬‬


‫حقول �صمال ا�صكندرية‬ ‫تعت ��رب حقول �سم ��ال اال�سكندرية م ��ن امل�سروع ��ات الهامة التى يت ��م تنميتها فى‬ ‫م�سر وت�سعى وزارة البرتول والرثوة املعدنية من خال ال�سركة القاب�سة للغازات‬ ‫الطبيعية ايجا�س اإىل دخولها لانتاج قبل املوعد املحدد لها بثاثه �سهور فى عام‬ ‫‪ 2017‬حي ��ث اأنه كان خمطط و�سع احلقل عل ��ى خريطة االنتاج فى عام ‪ 2018‬اال‬ ‫اأن حاجة م�سر للغاز دفعت القطاع اىل االإ�سراع فى عمليات التنمية وكان امل�سروع‬ ‫قد توقف منذ عام ‪ 2011‬نتيجة االأحداث التي �سهدتها الباد بعد ثورة ‪ 25‬يناير‬ ‫امل�صروع‬ ‫يق ��ع امل�سروع تنمية حقول غاز �سم ��ال االإ�سكندرية باملياه العميقة بالبحر املتو�سط‬ ‫على م�سافة حوايل ‪ 85‬كيلو مرت من �سواحل مدينة ر�سيد وي�سمل امل�سروع ‪ 5‬حقول‬ ‫للغ ��از هي (ريفن ‪ -‬تارو�س ‪ -‬ليربا ‪ -‬في ��وم ‪ -‬جيزة)‪ ،‬من خال حتالف �سركتي‬ ‫"بي‪.‬بي" و"ديا" االأملانية باال�سرتاك مع هيئة البرتول وال�سركة القاب�سة للغازات‪.‬‬ ‫االحتياطيات و االنتاج‬ ‫يهدف امل�س ��روع اإىل تنمية االحتياطيات املكت�سفة من الغازات واملتكثفات والتي‬ ‫تق ��در بحوايل ‪ 5‬تريليون قدم مكعب م ��ن الغازات‪ ،‬وحوايل ‪ 55‬مليون برميل من‬ ‫املتكثفات ويبدء االنتاج مبعدالت‪ 490 :‬مليون قدم مكعب يوميا ‪ ،‬ترتفع تدريجيا‬ ‫اإىل ‪ 1250‬مليون قدم مكعب يوميا فى نهاية امل�سروع‬ ‫مراحل التنفيذ‬ ‫تقوم �سركة "بي بي"‪ ،‬بتنفيذ امل�سروع باأحدث تكنولوجيات االآبار فوق قاع البحر‬ ‫م ��ن خ ��ال حفر واإكمال ‪ 21‬بئ ��ر ًا باملياه العميقة والتي ي�س ��ل عمقها اإىل ‪1000‬‬ ‫مرت حت ��ت �سطح البحر‪ ،‬واإع ��ادة تاأهيل ت�سهيات ر�سي ��د ملعاجلة غازات حقلي‬ ‫(جيزه ‪ -‬فيوم)‪.‬‬ ‫ً‬ ‫و ت�سمل مراحل التنفيذ اأي�سا اإن�ساء حمطة جديدة ملعاجلة غازات حقل "ريفن"‪،‬‬ ‫واإن�س ��اء خط اأنابيب بطول ‪ 35‬كيلو مرت لربط حقلي "ليربا" و"تارو�س" مع خط‬ ‫اأنابي ��ب حقول الربل�س ملعاجلة اإنتاج احلقلن بت�سهيات الربل�س‪ ،‬باالإ�سافة اإىل‬ ‫اإن�س ��اء خطي اأنابيب بط ��ول ‪ 70‬كيلو مرت لنقل غازات حق ��ول "جيزة" و"فيوم"‬ ‫و"ريفن" ملعاجلتها بت�سهيات ر�سيد و�سرق ر�سيد‪.‬‬ ‫التكلفة اال�صتثمارية‬ ‫تبل ��غ اإجم ��ايل التكلف ��ة اال�ستثمارية للم�س ��روع حوايل ‪ 11‬ملي ��ار دوالر‪ ،‬حيث مت‬ ‫تعجيل موعد بدء االإنتاج من حقول "تور�س" و"ليربا" يف الربع الثالث من العام‬ ‫الق ��ادم الإنتاج ح ��وايل ‪ 600‬مليون قدم يومي� � ًا‪ ،‬ويرتفع اإنتاج امل�س ��روع تدريجي ًا‬ ‫لي�سل اإىل ‪ 1250‬مليون ق ��دم مكعب يومي ًا غازعام (‪ )2020-2019‬وما يرتاوح‬ ‫بن ‪ 25-20‬األف برميل يومي ًا من املتكثفات‪.‬‬

‫حقل اتوال‬

‫يع ��د حقل اأتول للغاز مبنطق ��ة امتياز �سمال دمياط البحرية ف ��ى �سرق دلتا النيل‬ ‫بالبح ��ر املتو�س ��ط‪ ،‬م ��ن اأه ��م االكت�ساف ��ات الغازية الت ��ى حتققت خ ��ال الفرتة‬ ‫االأخ ��رية‪ ،‬وعمل قطاع البرتول على �سرعة جتهيزه ومتلك �سركة “بى بى” ‪%100‬‬ ‫فى منطقة امتياز �سمال دمياط البحرية ‪.‬‬ ‫اهم املعلومات التى تخ�س احلقل‬ ‫‪ -1‬حتقق ك�سف حقل اأتول من قبل �سركة بى بى الربيطانية فى مار�س ‪ ،2015‬ومت‬ ‫حفر البئر اأتول‪ 1-‬اال�ستك�سافية فى املياه العميقة فى منطقة امتياز �سمال دمياط‬ ‫البحرية الواقع ��ة فى �سرق دلتا النيل با�ستخدام احلف ��ار "مري�سك دي�سكفورور"‬ ‫من اجليل ال�ساد�س الأجهزة احلفر البحرية‪.‬‬ ‫‪ Ó‬و�سل البئر اال�ستك�سافى لعمق ‪ 6400‬مرت واخرتق جتمعا للغاز الطبيعى مل�سافة‬ ‫‪50‬م تقريبا فى �سخور رملية عالية اجلودة‪.‬‬ ‫‪ Ó‬مت توقيع االتفاق املبدئى للحقل بن البرتول وال�سركة فى نوفمرب ‪ ،2015‬بعد ‪8‬‬ ‫اأ�سهر فقط من اكت�سافه‪.‬‬ ‫‪ Ó‬ويق ��در احتياطى الغاز بحقل اأتول ب�‪ 1.5‬تريليون قدم مكعب و‪ 31‬مليون برميل‬ ‫م ��ن املتكثفات‪ ،‬و�ستتم املعاجلة الربي ��ة للغاز من خال الت�سهيات القائمة فى‬ ‫امليناء الغربى‪.‬‬ ‫‪ Ó‬يوفر حقل اأتول لل�سوق املحلى ‪ 300‬مليون قدم مكعب من الغاز فى اليوم‪.‬‬ ‫‪ Ó‬يبدء االإنتاج من احلقل خال الن�سف االأول من عام ‪.2018‬‬ ‫‪� 3 Ó‬سنوات ي�ستغرقها امل�سروع منذ مرحلة اال�ستك�ساف اإىل مرحلة االإنتاج‪.‬‬ ‫‪ Ó‬املرحل ��ة االأوىل لاإنتاج املبكر ت�سمل اإع ��ادة اإكمال واإنتاج البئ ��ر اال�ستك�سافية‬ ‫القائم ��ة مع حفر بئري ��ن اإ�سافين وتركي ��ب الروابط والت�سهي ��ات ال�سرورية‬ ‫املطلوبة لاإنتاج من احلقل‪.‬‬ ‫‪ Ó‬يت ��م حفر اآب ��ار احلقل اأتول با�ستخ ��دام جهاز احلفر "دى اإ� ��س ‪ "6‬بعد و�سوله‬ ‫اإىل م�سر ‪.‬‬

‫‪2016‬‬

‫‪13 Petroleum Today - November‬‬


‫حقل ظهر‬ ‫يعد حق ��ل ظهر من اأهم م�سروع ��ات تنمية حقول‬ ‫الغ ��از الطبيعى اجل ��ارى تنفيذه ��ا‪ ،‬حيث �سنفت‬ ‫ال�س ��ركات العاملة فى جمال النفط والغاز احلقل‬ ‫باأنه اأكرب ك�سف غ ��از بالبحر املتو�سط‪ ،‬ومن اأكرب‬ ‫االكت�ساف ��ات عل ��ى امل�ستوى العاملى بع ��د اأن قدرت‬ ‫احتياطياته ب� ��‪ 30‬تريليون ق ��دم مكعب مبا يعادل‬ ‫‪ 5.5‬مليار برميل مكافئ من النفط‪.‬‬ ‫االتفاقية‬ ‫وقع ��ت �سرك ��ة اإين ��ى االإيطالي ��ة‪ ،‬اتفاقي ��ة البحث‬ ‫واال�ستك�س ��اف اخلا�سة باحلقل م ��ع وزارة البرتول‬ ‫فى يناي ��ر ‪ ،2014‬وا�ستطاعت حتقي ��ق ك�سف ظهر‬ ‫خال ع ��ام ون�س ��ف‪ ،‬واأعلنت عن ��ه ر�سميا فى ‪30‬‬ ‫اغ�سط� ��س ‪ 2015‬وغ ��ادر احلف ��ار �سابي ��م الإجراء‬ ‫اأعم ��ال ال�سيانة‪ ،‬وبعدها ا�ستم ��رت وزارة البرتول‬ ‫وال�سركة فى عقد لقاءات م�ستمرة مع الرئي�س عبد‬ ‫الفت ��اح ال�سي�سى‪ ،‬الإع ��داد وتقييم خطة عمل تنمية‬ ‫وتطوير احلقل‪.‬‬ ‫بدء حفر البئر الثانية‬ ‫وف ��ى‪ 30‬دي�سم ��رب ‪ 2015‬ع ��اود حف ��ار �سابي ��م بعد‬ ‫اإجراء ال�سيانة‪ ،‬اأعمال حفر ظهر ‪ ، 2‬وبداأت �سركة‬ ‫باعيم ال�سريك امل�سرى ل�سركة اإينى االيطالية مع‬ ‫عملي ��ة احلفر االإجراءات التنفيذية لتاأ�سي�س �سركة‬ ‫م�سرتك ��ة تت ��وىل اأعمال تنمي ��ة امل�س ��روع واالأن�سطة‬ ‫املتعلقة به واعتماد عقد التنمية‬ ‫جناح اأول عملية اختبار للإنتاج من "ظهر ‪"2‬‬ ‫وبعد مرور �سهرين عل ��ى بدء اأعمال احلفر فى ‪30‬‬ ‫اأغ�سط� ��س اأعلنت اإينى االإيطالية جناح االختبارات‬ ‫االأوىل لاإنت ��اج من بئر "ظه ��ر ‪ "2‬التقييمى واأثناء‬ ‫االختب ��ار مت فت ��ح ‪ 120‬مرتا من اخل ��زان لاإنتاج‪،‬‬ ‫و�س ��خ ‪ 44‬ملي ��ون ق ��دم مكع ��ب م ��ن الغ ��از يوميا‪،‬‬ ‫واأثبت ��ت نتائج التحليات والبيانات التى مت جمعها‬ ‫ع ��ن البئ ��ر‪ ،‬اأن لديه اإمكانية اإنت ��اج ممتازة‪ ،‬ت�سل‬ ‫اإىل ‪ 250‬ملي ��ون ق ��دم مكعب يوميا‪ ،‬مب ��ا يعادل ‪46‬‬ ‫األف برميل من النفط املكافئ يوميا‪.‬‬

‫‪12‬‬

‫‪2016‬‬

‫‪Petroleum Today - November‬‬

‫م��راح��ل تاأ�صي�س ���ص��رك��ة ب��رو���ص��روق‬ ‫لتنمية الك�صف‬ ‫واأنه���ت وزارة الب���رتول وال�سرك���ة مل���ف تنمية‬ ‫اكت�س���اف حق���ل "ظه���ر" ف���ى ي���وم ‪ 21‬فرباير‬ ‫املا�سى‪ ،‬بعد مرور ‪� 6‬سهور على حتقيق الك�سف‬ ‫وعامن على توقيع االتفاقية البرتولية اخلا�سة‬ ‫به���ا واأعلن املهند�س ط���ارق املا وزير البرتول‬ ‫اكتم���ال االإج���راءات التنفيذي���ة لتنمية احلقل‬ ‫ومت اعتم���اد عقد التنمية ل�سركة اأيوك اململوكة‬ ‫بالكامل ل� اإينى االإيطالية‪ ،‬كما مت تكوين �سركة‬ ‫برتو�س���روق للبرتول وهى �سرك���ة م�سرتكة بن‬ ‫ال�سركة امل�سرية القاب�س���ة للغازات الطبيعية‬ ‫(اإيجا�س) وايوك لتقوم باأعمال تنمية م�سروع‬ ‫حقل ظهر‪ ،‬على اأن يتم تنفيذ االأن�سطة املتعلقة‬ ‫بامل�سروع من خال �سركة برتوبل‪.‬‬ ‫اإن�صاء املحطة الربية ملعاجلة الغاز‬ ‫وم ��ع بدء اأعمال حفر البئ ��ر الثالث فى �سهر مار�س‬ ‫‪ 2016‬ب ��داأت �سرك ��ة برتوجيت واإنبى ت ��وىل اأعمال‬ ‫اإن�س ��اء املحطة الربية ملعاجلة الغاز املنتج من حقل‬ ‫ظه ��ر على البحر املتو�سط ف ��ى حمافظة بور�سعيد‪،‬‬ ‫وت�سم ��ل االإن�س ��اءات تثبي ��ت الرتبة وهو م ��ا يعرف‬ ‫باخلوازي ��ق اخلر�ساني ��ة‪ ،‬اإ�ساف ��ة اإىل القواع ��د‬ ‫املعدني ��ة واملوا�سري لربط ت�سهي ��ات معاجلة الغاز‬ ‫باإنت ��اج احلق ��ل فى منطق ��ة امتياز �س ��روق ومن ثم‬ ‫�سخة فى ال�سوق املحلى‪.‬‬ ‫مراحل متابعة تنفيذ امل�ص��روع وحفر البئر‬ ‫الرابعة‬ ‫وف ��ى ‪ 23‬اأبريل املا�سى عق ��د املهند�س طارق املا‪،‬‬ ‫وزي ��ر البرتول والرثوة املعدني ��ة‪ ،‬االجتماع ال�سهرى‬ ‫الثانى للجن ��ة العليا املُ�سكلة م ��ن ال�سركة القاب�سة‬ ‫للغازات وهيئة البرتول و�سركة برتوبل و�سركة اإينى‬ ‫االإيطالية‪ ،‬ملتابعة مراحل تنفيذ م�سروع تنمية حقل‬ ‫ظه ��ر وتقييم تقدم االأعمال وفق� � ًا للخطة الزمنية‪،‬‬ ‫واأعلن ع ��ن انتهاء حف ��ر البئر الثالث ��ة وبدء �سركة‬ ‫اإينى االإيطالية فى حفر البئر الرابعة‪.‬‬

‫تاأكي��د االحتياطي��ات وانتق��ال احلفار �ص��ايبم‬ ‫‪ 10000‬حلفر البئر اخلام�صة‬ ‫وبع ��د �سهرين من حفر البئر الرابعة اأعلنت اللجنة‬ ‫امل�سكل ��ة انتقال احلف ��ار �سايب ��م ‪ 10000‬للبدء فى‬ ‫حف ��ر البئ ��ر اخلام�س ��ة وا�ستمرت عملي ��ات احلفر‬ ‫مل ��دة ‪� 3‬سهور حت ��ى اأعلنت ال�سركة ف ��ى ‪� 1‬سبتمرب‬ ‫اجل ��ارى‪ ،‬حفر البئر ال�ساد�س ف ��ى املرحلى االأوىل‪،‬‬ ‫م�سرية اإىل اأن نتائج الغاز فى خزان البئر اخلام�سة‬ ‫اأك ��دت اأن االحتياطيات ‪ 30‬تريليون قدم مكعب من‬ ‫الغاز‪.‬‬ ‫املوقف احلاىل‬ ‫ووفقا لتقديرات حفر االآبار ال�سابقة‪ ،‬من املتوقع اأن‬ ‫ت�ستغرق عمليات حفر البئ ��ر ال�ساد�سة من �سهرين‬ ‫ون�س ��ف اإىل ثاثة �سهور ث ��م تتوا�سل عمليات ربط‬ ‫اإنتاج احلقل بالت�سهي ��ات التى تنقل الغاز ملعاجلة‬ ‫فى حمطة املعاجلة الربية فى بور�سعيد بدء االإنتاج‬ ‫املبكر فى دي�سمرب ‪ 2017‬مبتو�سط اإنتاج مليار قدم‬ ‫مكعب يتزايد تدريجي� � ًا لي�سل اإىل ‪ 2.7‬مليار قدم‬ ‫مكع ��ب يومي ًا فى عام ‪ 2019‬يتم توجيه كل الكميات‬ ‫املنتجة لل�سوق املحلى‪.‬‬ ‫وف ��ى تقرير ل�سحيفة نيوي ��ورك تاميزقالت فيه اإن‬ ‫�سركة اإينى االإيطالية قدمت رهانا كبريا على الغاز‬ ‫الطبيع ��ى قبالة ال�سواح ��ل امل�سري ��ة‪ ،‬وا�ستطاعت‬ ‫حتقي ��ق جن ��اح كب ��ري‪ ،‬م�سيف ��ة اأن اكت�س ��اف حقل‬ ‫"ظه ��ر" كان م�س ��در ارتياح وف ��رح لل�سركة التى‬ ‫خاطرت ب�‪ 70‬ملي ��ون دوالر حلفر البئر فى املنطقة‬ ‫التى �سبق ل�سركتى روي ��ال دات�س �سيل والربيطانية‬ ‫الهولندية اأن حفروا فيها دون جناح‪.‬‬


‫مستقبل صناعة الغاز‬ ‫فى مصر ‪ ....‬إلى أين ؟‬ ‫بع ��د عدة �س ��نوات م ��ن الرتاجع احلاد النت ��اج الغاز‬ ‫ف ��ى م�س ��ر وال ��ذى ادى اىل حت ��ول م�س ��ر م ��ن بلد‬ ‫م�س ��در للغازعل ��ى م�ستوى الع ��امل اىل بلد من اكرب‬ ‫امل�ستوردي ��ن للغ ��از ل�س ��د احتياجات الطل ��ب املحلى‬ ‫مما جعل ال�س ��ركة امل�س ��رية للغازات ايجا�س تطرح‬ ‫اكرب مناق�س ��ة على م�س ��توى العامل ال�س ��ترياد الغاز‬ ‫الطبيعي امل�سال ‪2018- 2017‬‬ ‫وم ��ن االهمية مبكان هنا اأن ن�سري اىل بع�س االرقام‬ ‫احلا�س ��ة بقطاع الغاز الطبيع ��ي يف م�سر من حيث‬ ‫اال�سته ��اك واالنت ��اج وبع�س االكت�ساف ��ات االخرية‬ ‫فمث ��ا يبل ��غ ا�ستهاك الب ��اد من الغ ��از الطبيعي‬ ‫يوميا "نحو ‪ 5.2‬مليار ق ��دم مكعبة كما يبلغ االنتاج‬ ‫‪ 4.350‬مليار قدم‪.‬‬ ‫الواقع يتغري‬ ‫اال ان قطاع الغ ��از الطبيعي امل�سري كان على موعد‬ ‫يف الف ��رتة االخرية مع عدد من االكت�سافات ال�سخمة‬ ‫التي توؤكد ان م�ستقب ��ل الغاز الطبيعي م�سرق وجتل�س‬ ‫في ��ه م�س ��ر مرتبعة على عر� ��س غاز البح ��ر االبي�س‬ ‫املتو�س ��ط ‪،‬فم�س ��ر متتل ��ك اك ��رب م�ساحة م ��ن املياه‬ ‫االقليمية يف البحر املتو�سط وطبقا لتقارير ودرا�سات‬ ‫موؤ�س�سات وجهات اقت�سادية عاملية فاإن تلك امل�ساحة‬ ‫ت�سبح على احتياطات �سخمة من الغاز الطبيعي ‪.‬‬ ‫اأعلنت �سركة اينى االيطالي ��ة فى ‪ 30‬اأغ�سط�س ‪2015‬‬

‫ع ��ن اك ��رب حقل فى البح ��ر املتو�سط " ظه ��ر " الواقع‬ ‫بامتي ��از �س ��روق باحتياطى يق ��در ب ‪ 30‬تريليون قدم‬ ‫مكع ��ب من الغاز وتب ��دء بعدها بي ب ��ي عماق النفط‬ ‫الربيطانى فى تنفيذ م�سروع حقول �سمال اال�سكندرية‬ ‫املق ��در االحتياط ��ى الغازى ل ��ه بنح ��و ‪ 5‬تريليون قدم‬ ‫مكع ��ب باال�سافة اىل حقول نور�س واتول باحتياطيات‬ ‫تقدر بنحو ‪ 3.5‬تريليون قدم مكعب‪.‬‬ ‫الواق ��ع يوؤك ��د اأن احتياط ��ات الغ ��از امل�س ��ري ترتكز‬ ‫باال�سا�س يف كا من منطقتي البحر االبي�س املتو�سط‬ ‫والدلت ��ا اال اأن ال�سهر املا�س ��ي �سهدا اكت�سافا جديدا‬ ‫للغ ��از ل�سرك ��ة �س ��ل العاملي ��ة يف ال�سح ��راء الغربي ��ة‬ ‫باحتياط ��ات ت�سل لن�سف تريليون ق ��دم مكعب على‬ ‫االأقل مع احتمال وجود احتياطيات اأكرب‪.‬‬ ‫م�صر مركز اقليمى للطاقة‬ ‫ي�ستهدف قط ��اع البرتول امل�س ��ري حتويل م�سر اىل‬ ‫مرك ��ز اقليمى ف ��ى املنطقة ع ��ام ‪ 2021‬وا�ستغال ما‬ ‫متلك ��ة م�سر من امكاني ��ات بعد دخول حق ��ول الغاز‬ ‫عل ��ى �سبكة االنت ��اج باملعدالت النهائي ��ة حيث متتلك‬ ‫م�س ��ر حمطت ��ن ال�سال ��ة الغ ��از ف ��ى كا م ��ن ادك ��و‬ ‫ودمياط مما ي�سم ��ح مل�سر بت�سدير الغاز لها ولدول‬ ‫اجل ��وار فى هذا االط ��ار مت تفعيل اإتفاقي ��ة نقل الغاز‬ ‫الطبيع ��ي م ��ن قرب� ��س عرب خ ��ط اأنابي ��ب اإىل م�سر‬ ‫و�سيب ��داأ ا�ستخراجه من االحتياطي ��ات التي اكت�سفت‬

‫قبال ��ة �سواحل اجلزي ��رة الواقعة يف البح ��ر املتو�سط‬ ‫وكان ��ت �سرك ��ة نوب ��ل االأمريكية للطاقة ق ��د اكت�سفت‬ ‫م ��ا يقدر بنح ��و ‪ 4.5‬تريلي ��ون قدم مكعبة م ��ن الغاز‬ ‫الطبيعي قبالة �سواحل قرب�س يف اأواخر عام ‪.2011‬‬ ‫متتلك م�س ��ر اي�سا بني ��ة اأ�سا�سية‪ ،‬تتمث ��ل فى قناة‬ ‫ال�سوي� ��س‪ ،‬وم�س ��روع �سومي ��د ال ��ذى يج ��رى تطوير‬ ‫قدرات ��ه‪ ،‬ال�ستقب ��ال وتخزي ��ن املنتج ��ات البرتولية‪،‬‬ ‫وطاق ��ة تكري ��ر كبرية ج ��دا‪ ،‬ف ��ى معامله ��ا القائمة‬ ‫بال�سوي� ��س واالإ�سكندري ��ة واأ�سي ��وط‪ ،‬وموان ��ئ مطلة‬ ‫عل ��ى البحري ��ن املتو�س ��ط واالأحمر‪ ،‬مب ��ا ت�سمه من‬ ‫ت�سهي ��ات ال�ستقب ��ال اخل ��ام واملنتج ��ات‪ ،‬و�سبكات‬ ‫خطوط لنقل املنتجات البرتولي ��ة والغاز املمتدة فى‬ ‫خمتلف اأنحاء م�سر ‪.‬‬ ‫مزايدة جديدة‬ ‫�ست�سه ��د املرحل ��ة القادم ��ة ط ��رح ال�سرك ��ة القاب�سة‬ ‫للغ ��ازات الطبيعية " اإيجا�س" مزاي ��دة للتنقيب عن‬ ‫الغ ��از يف ‪ 9‬اإىل ‪ 11‬منطق ��ة يف مطل ��ع ‪ "2017‬واي�سا‬ ‫�ست�س ��رع �سرك ��ة اإدي�س ��ون االإيطالي ��ة اأعم ��ال احلفر‬ ‫بجوار اإمتياز ُظهر يف مطلع العام القادم‪.‬‬ ‫ال�سفح ��ات القادم ��ة حت ��وي ب ��ن طياته ��ا اأه ��م‬ ‫االكت�ساف ��ات واالتفاقيات وامل�سروع ��ات اجلديد مما‬ ‫ير�س ��م خريط ��ة بالكلم ��ات حت ��دد مام ��ح م�ستقبل‬ ‫�سناعة الغاز يف م�سر ‪.‬‬

‫‪2016‬‬

‫‪11 Petroleum Today - November‬‬


CONCESSION MAP

N W

231

E

Dana Gas Egypt

WEST MANZALA

201

Dana Gas Egypt

WEST QANTARA

202

EDISON

N. E. HAPY OFFSHORE

203

bp

BRULLUS OFFSHORE

204

IEOC

UP

205

NORTH LEIL

MEDITERRANEAN SEA & DELTA

S

230

IEOC

225 bp NORTH EL MAX

200

KARAWAN 00 0 -2

224 bp NORTH TENNIN

223 IEOC SHOROUK

229 EDISON N. PORT FOUAD

bp

N. DAMIETTA OFFSHORE

207

bp

N. TABIA OFFSHORE

208

BG

EL BURG OFFSHORE

210

DEA- Nile

DESUQ

211

DEA- Nile

NORTH EL AMYRIA

212

bp

N. ARS EL ESH OFFSHORE

213

IEOC

WEST BALTIM OFFSHORE

214

IEOC

THEQAH

215

IEOC

N. EL HAMMAD OFFSHORE

218

GAS DE FRANCE

WEST BRULLUS OFFSHORE

219 220

PETRO CALTIC SEA DRAGON

SOUTH IDKU ONSHORE SOUTH DISOUQ ONSHORE

221

DANA GAS EGYPT

N. EL ARISH OFFSHORE

222

EDISON

NORTH THEKAH OFFSHORE

223

IEOC bp bp

225

202 EDISON N. E. HAPY OFFSHORE

bp N. TABIA OFFSHORE

32

211 Dea NILE 46

24

u

23

208

2 IEOC W. ABU MADI

82 EDISON Ab

23

204

IEOC N. EL HAMMAD

208

ir

Q

212

bp N. RAS EL ESH OFFSHORE

200

DRA KHA

UP

DANA GAS EGYPT

NORTH EL SALHIYA ONSHORE

227

UP

TOTAL

NORTH EL MAHALA OFFSHORE

228

UP

bp

EL MATARIYA ONSHORE

229

UP

EDISON

N. PORT FOUAD OFFSHORE

230

UP

IEOC

KARAWAN OFFSHORE

231

UP

IEOC

NORTH LEIL OFFSHORE

19

IEOC

20

IEOC

N. PORT SAID “PETRO SAID”

21

PERENCO

OFFSHORE N. SINAI (NOSPCO) BALTIM “MED GAS”

EAST DELTA “PETRO DELTA”

22

IEOC

23

IEOC

EL TEMSAH (PETRO TEMSAH)

24

bp

N. ALEX

27

Dana Gas Egypt

30

bp

31

BG

32

BG

W . DELTA “DEEP MARINE” (BRULUS CO.)

46

DEA- Nile

N. IDKU

EL MANZALA (WASCO)

EGPC

RAS EL BARR (RAPETCO)

ROSETTA (RASHPETCO)

52

PETROCELTIC

EL MANSOURA

65

PETROCELTIC

SOUTH EAST EL

82

EDISON

ABU QIR “WEPCO”

221 DANA GAS EGYPT N. EL ARISH

10

S.ALKHILALA

200

52 E. DIKIRNIS

19 IEOC E. Delta

52

201 201

226

227 51

EL TAMAD

PETRO CALTIC SOUTH IDKU

21 PERENCO N. Sinai

52 52

219

53

NORTH EL MAX OFFSHORE

226

214 IEOC Theqah

200 Dana Gas Egypt W. El Manzala

228

52 52

ALEX.

AL RAWDAH

201

DAMAS

S.DAMAS

UP UNDER PROCESSING

20 IEOC N. Port Said

Dana Gas Egypt El Manzala

1 E.G.P.C. Abu Madi 52

+

RESTRICTED AREAS

IEOC El Temsah

27

210 DEA- Nile DESUQ

ABU

Petroleum Today

211

218

Abu Qir

31 BG Rosetta

203

214

SHOROUK OFFSHORE NORTH TENNIN OFFSHORE

4

24

23 23

215

W.

24

N. Idku

30 bp Ras El Barr

22 IEOC

E.ABU KHADRA

46

DEA- IDKU

204

204

213 IEOC

N. TINEH OFFSHORE

(a)

206

206

31

54

bp

IEOC E. Delta “Deep Marine”

213

32

205

29

EGAS

(A S.R BU A F RA AH AD )

32

32 31

24

22 IEOC

32

-1000

206

32

32

222 EDISON NORTH THEKAH

NORTH EL BURG OFFSHORE N. TINEH OFFSHORE

206

224

207

bp bp

220

SEA DRAGON SOUTH DISOUQ

CAIRO

65 Melrose SE EL MANSOURA

SINAI


‫ماليني الدوالرات املهدرة من الدخل القومي امل�صري‬

‫املهند�س خالدعبود ي�شرح كيف تتهرب �شركات اخلدمات البرتوليه‬ ‫الأجنبية العاملة يف املنطقةاحلرة من الوفاء باإلتزاماتها ال�شريبية‬

‫مهند�س‪ /‬خـــ�لـد عبـــــود‬

‫مدير تطوير الأعمال ب�صركة ‪MCS‬‬

‫�صل ��ب املو�ص ��وع الذي نح ��ن ب�صدده مي� ��س الأمن‬ ‫القوم ��ي امل�صري كما ان ��ه مي�س بطريق ��ة مبا�صرة‬ ‫الدخل القومي من العملة ال�صعبة و الذي يف الوقت‬ ‫احلايل يت ��م ا�صتنزافه نظرا لع ��دم وجود التوا�صل‬ ‫املطلوب بني الهيئات الأتي ذكرها ‪:‬‬ ‫‪ .1‬هيئة البرتول‬ ‫‪ .2‬هيئة ال�صتثمار‬ ‫‪ .3‬وزارة املالية‬ ‫ولتب�ضيط املو�ضوع يرجى العلم ب�أن ‪:‬‬ ‫‪ .1‬اي �صرك ��ة اأجنبية تن ��وي العمل مب�صر يف جمال‬ ‫اخلدم ��ات البرتولي ��ة و لي� ��س ال�صناع ��ة ب�صفة‬ ‫دائم ��ة تق ��وم باأن�ص ��اء ف ��رع لل�صرك ��ه الأم داخل‬ ‫املنطق ��ة احلرة مب�ص ��ر اأو اأقام ��ة �صركة اأجنبية‬ ‫عامل ��ة يف م�صر مب�صاركة ط ��رف م�صري يكون‬ ‫ل ��ه ن�صبة حم ��دودة ل تتع ��دى ‪ % 10 – 5‬كما اأنه‬ ‫ليوجد قانون يلزم الط ��رف الأجنبي بحد اأدنى‬ ‫لراأ� ��س مال ال�صركة و لذلك تن�صئ ال�صركة بدون‬ ‫راأ�س مال يذكر اأو اأي عمالة م�صرية‪.‬‬ ‫‪ .2‬وجود ال�صركة يف املنطقة احلرة يلزمها بدفع ‪%1‬‬ ‫من دخلها اىل هيئة الأ�صتثمار يف املناطق احلرة‬ ‫و اىل هن ��ا ف� �اأن الهيئ ��ة العامة للب ��رتول و هيئة‬ ‫ال�صتثم ��ار تعت ��ر ان تخ�صي� ��س ‪ %1‬من الدخل‬ ‫ميثل �صت ��ار قانوين لتواجد ه ��ذه ال�صركة وليتم‬ ‫اأي متابعة ملايحدث لباقي الدخل (‪)%99‬‬ ‫‪ .3‬يبقى الأن ‪ %99‬م ��ن الدخل و الذي مت احل�صول‬ ‫عليه ��ا بفعل اأ�صتعمال وح ��دات بحرية اأو اجهزة‬ ‫تقنية متقدمة يتم اأيجارها من اخلارج اأو عمالة‬ ‫اأجنبية�صواء من ال�صركة الم او طرف ثالث مما‬ ‫ي�صتوج ��ب ح�ص ��ب �صري ��ح القان ��ون تطبيق ‪%20‬‬ ‫‪8‬‬

‫‪2016‬‬

‫‪Petroleum Today - November‬‬

‫ك�صريب ��ة م�صتقطع ��ة م ��ن املنبع يج ��ب تطبيقها‬ ‫عل ��ى املعدات املوؤجرة م ��ن اأي �صركة غري مقيمة‬ ‫يف م�ص ��ر المر ال ��ذي ل يتم ول توج ��د اآلية بني‬ ‫الهيئ ��ات ال�صابق ذكرها لتتبع هذا المر ‪ ،‬ال�صئ‬ ‫ال ��ذي يه ��در ماليني ال ��دولرات م ��ن ال�صرائب‬ ‫امل�صتحقة للدولة‪.‬‬ ‫‪ .4‬كما اأن ��ه جدي ��ر بالذكر ب� �اأن الو�ص ��ع ال�صريبي‬ ‫احل ��ايل ل�صركات اخلدم ��ات البرتولية الأجنبية‬ ‫العامل ��ة يف م�ص ��رو الت ��ي له ��ا كيان �ص ��وري يف‬ ‫م�صر ل يلزمه ��ا باأي ر�صوم للدول ��ة اأذا ماكانت‬ ‫من�صاأة يف املنطقة احلرة و يف املقابل فاأن مثيلها‬ ‫من ال�صركات امل�صرية تقوم بدفع التزاماتها من‬ ‫التاأمينات الأجتماعية و �صريبة الدخل و �صريبة‬ ‫املبيع ��ات يف حالة ع ��دم وجود منطق ��ة حرة مبا‬ ‫يعادل اأ�صع ��اف مات�صدده ال�ص ��ركات الأجنبية ‪،‬‬ ‫ال�ص ��ئ ال ��ذي ي�صتوجب تدخل عاج ��ل من الدولة‬ ‫ل�صم ��ان حق ��وق الدول ��ة من �ص ��ركات اخلدمات‬ ‫الجنبية العاملة يف م�صر‪.‬‬ ‫‪ .5‬لالأ�ص ��ف فاأن ال�صركات العاملية و التي تقوم بدور‬ ‫املحا�ص ��ب القانوين لل�ص ��ركات الأجنبية العاملة‬ ‫مب�صر ت�صاعد هذه ال�صركات على الألتفاف على‬ ‫�صريح ن�س القانون و التهرب من دفع ال�صرائب‬ ‫امل�صتحق ��ة على املعدات املوؤج ��رة من خالل هذه‬ ‫التغرة يف القانون‪.‬‬ ‫كيفية تدارك الأمر ‪:‬‬ ‫‪ .1‬مناق�صات هيئة البرتول و الغاز لبد اأن تت�صمن‬ ‫ن�س �صريح باأن الأجهزة امل�صتخدمة يف اخلدمة‬ ‫اأم ��ا ان تكون مملوك ��ة لفرع ال�صرك ��ة املقامة يف‬ ‫م�صر عن طري ��ق اأ�صافتها اىل اأ�صول ال�صركة و‬

‫بالتبعي ��ة اىل راأ�س مال ال�صركة املقامة يف م�صر‬ ‫اأو ان تك ��ون املعدة موؤج ��رة من اخلارج و بالتايل‬ ‫ف� �اأن ‪ %20‬م ��ن دخل هذه املع ��دة يف م�صر يجب‬ ‫توريده من املنب ��ع اىل وزارة املالية مما ي�صتلزم‬ ‫مراع ��اة هذا البن ��د يف ت�صعري اخلدم ��ة املقدمة‬ ‫اىل وزارة البرتول‪.‬‬ ‫‪ .2‬يف حال ��ة اأن�ص ��اء ف ��رع ل�صركة اأجنبي ��ة يف م�صر‬ ‫لبد من و�صع �صرط وج ��ود اأ�صول مثبتة متلكها‬ ‫ال�صركة امل�صرية على �صبي ��ل املثال �صركة �صفن‬ ‫لب ��د اأن متل ��ك ال�صفن العامل ��ة يف م�صرو ترفع‬ ‫العلم امل�صري و م�صافة اىل راأ�س مال ال�صركة‪.‬‬ ‫‪ .3‬يف حال ��ة اأيج ��ار املع ��دات م ��ن اخل ��ارج لبد ان‬ ‫تكون املعدات مملوكة لل�صركة والعمالة الأجنبية‬ ‫مثبت ��ة يف لئحة العاملني بال�صركة امل�صرية و ال‬ ‫ا�صتحق للدولة �صريبة الدخل‪.‬‬ ‫‪ .4‬عمل تن�صي ��ق بني الهيئات ال�صاب ��ق ذكرها حتت‬ ‫قي ��ادة جه ��ة �صيادية م ��ن �صاأنها و�ص ��ع املعايري‬ ‫و اتخ ��اذ مايل ��زم م ��ن ق ��رارات تتطل ��ب ج ��راأة‬ ‫و�صجاع ��ة حلماي ��ة العمل ��ة ال�صعب ��ة وحماي ��ة‬ ‫امل�صتثمري ��ن املحليني اجلادي ��ن و ال�صيطرة على‬ ‫اأي ب ��وادر ف�ص ��اد و تواطوؤ مع اجله ��ات الأجنبية‬ ‫بدافع ت�صجيع الأ�صتثمار يف م�صر‪.‬‬ ‫‪ .5‬ين�ص ��ح بالأ�صتف ��ادة م ��ن التج ��ارب الرائ ��دة‬ ‫للرازي ��ل و اأجن ��ول و ماليزي ��ا يف ه ��ذا املج ��ال‬ ‫والتي عظمت م ��ن �صاأن ال�ص ��ركات املحلية و قد‬ ‫اأدي ذلك عل ��ي �صبيل املث ��ال يف الرازيل �أقامة‬ ‫�سناعة �سفن هائلة‪.‬‬




‫وكالة الطاقة‪� :‬صوق النفط قد ت�صتعيد توازنها بوترية اأ�صرع اإذا التزمت اأوبك بهدفها‬ ‫قالت وكالة الطاقة الدولية اإن املعرو�س العاملي من النفط قد ي�سبح متما�سيا مع الطلب ب�سكل اأ�سرع اإذا اتفقت‬ ‫منظم ��ة البلدان امل�سدرة للبرول (اأوبك) م ��ع رو�سيا على تقلي�س كبري وكاف يف الإنتاج لكن مل يت�سح بعد مدى‬ ‫ال�سرع ��ة التي ق ��د يحدث بها ذلك‪ .‬وقالت الوكال ��ة يف تقرير اأغ�سط�س اإنها تتوقع منو الطل ��ب العاملي على النفط‬ ‫بواق ��ع ‪ 1.2‬ملي ��ون برمي ��ل يوميا العام املقب ��ل لتبقي على توقعاته ��ا دون تغيري عن ال�سهر ال�ساب ��ق لكنها خف�ست‬ ‫تقديراتها للنمو يف ‪ 2016‬بواقع ‪ 40‬األف برميل يوميا اإىل ‪ 1.2‬مليون برميل يوميا من نحو ‪ 1.3‬مليون برميل يوميا‬ ‫ال�سه ��ر املا�س ��ي‪ .‬وقالت الوكالة "حتى يف ظل وجود بوادر اأولية على اأن تخم ��ة املخزونات بداأت يف التقل�س ت�سري‬ ‫توقعاتنا للعر�س والطلب اإىل اأن ال�سوق قد تظل متخمة باملعرو�س خالل الن�سف الأول من العام القادم اإذ تركها‬ ‫اجلميع لآلياتها‪( .‬اأما) اإذا التزمت اأوبك بهدفها اجلديد فقد ت�ستعيد ال�سوق توازنها ب�سكل اأ�سرع‪.‬‬

‫الكويت تتنازل عن دعوة حتكيمية‬ ‫�صد ايجا�س وجا�صكو‬

‫ارتفاع انتاج اأوبك اإىل اأعلى م�صتوى يف ثمانية اأعوام‬ ‫اأعلنت منظمة البلدان امل�سدرة للبرول (اأوبك) زيادة اإنتاجها النفطي يف �سبتمر اإىل اأعلى م�ستوى يف ثمانية‬ ‫اأعوام على الأقل ورفعت توقعاتها لنمو املعرو�س من خارجها يف ‪ 2017‬مما ي�سري اإىل فائ�س اأكر يف ال�سوق يف‬ ‫العام املقبل رغم اتفاق املنظمة على خف�س الإنتاج‪ .‬وقالت اأوبك يف تقرير �سهري اإنها �سخت ‪ 33.39‬مليون‬ ‫برميل يوميا خالل �سبتمر املا�سي وفقا لبيانات جمعتها املنظمة من م�سادر ثانوية اأي بزيادة ‪ 220‬األف‬ ‫برميل يوميا عن اأغ�سط�س‪ .‬وقالت اأوبك يف تقريرها "املخزونات قرب اأعلي م�ستوياتها على الإطالق‪ .‬رغم اأن‬ ‫هذه امل�ستويات املرتفعة انخف�ست قليال يف الأ�سابيع الأخرية‪ ".‬واأظهر التقرير اأن زيادة الإمدادات يف �سبتمر‬ ‫جاء معظمها من ليبيا ونيجرييا التي ت�ستاأنف الإنتاج بعد ا�سطرابات وكذلك من العراق التي ت�ساءلت عن‬ ‫مدى دقة اأرقام امل�سادر الثانوية لأوبك‪.‬‬

‫رو�صيا وتركيا توقعان اتفاق بناء خط الغاز ترك‪�-‬صرتمي‬ ‫يف اإط ��ار �سيا�س ��ات الدولة يف الوق ��ت الراهن نحو‬ ‫ت�سجي ��ع ال�ستثم ��ار والعم ��ل على اإنه ��اء املنازعات‬ ‫ال�ستثماري ��ة عن طريق ت�سويته ��ا ب�سورة ودية بني‬ ‫الأطراف‪ ،‬واإمياء ًا اىل العالقات الوطيدة والتعاون‬ ‫امل�ستمر بني جمهورية م�سر العربية ودولة الكويت‬ ‫�سهد املهند�س طارق املال وزير البرول والرثوة‬ ‫املعدني ��ة مبق ��ر وزارة الب ��رول توقي ��ع اتف ��اق‬ ‫ت�سوي ��ة للمنازع ��ات النا�سئ ��ة بني �سرك ��ة بوابة‬ ‫الكوي ��ت القاب�سة وال�سرك ��ة امل�سرية القاب�سة‬ ‫للغازات الطبيعية "اإيجا�س" وال�سركة امل�سرية‬ ‫للغازات الطبيعية " جا�سكو " و�سركة اخلدمات‬ ‫التجاري ��ة البرولي ��ة " بروتري ��د " و�سرك ��ة‬ ‫الإ�سكندرية لالأ�سمدة ‪،.‬‬ ‫وبن ��ا ًء علي ��ه مت التن ��ازل ع ��ن الدع ��وى التحكيمية‬ ‫املقامة �س ��د جمهورية م�سر العربي ��ة اأمام املركز‬ ‫الدويل لت�سوي ��ة منازعات ال�ستثم ��ار التابع للبنك‬ ‫الدويل " الك�سيد "‪ ،‬وذلك حتت مظلة جلنة ت�سوية‬ ‫منازعات عقود ال�ستثمار برئا�سة جمل�س الوزراء‬

‫وقعت تركيا ورو�سيا اتفاقا ثنائيا لبناء خط اأنابيب نقل الغاز ترك‪�-‬سرمي الذي �سيقام حتت البحر وقع‬ ‫التفاق يف ا�سطنبول بح�سور الرئي�س الرو�سي فالدميري بوتني والرئي�س الركي رجب طيب اإردوغانيت�سمن‬ ‫التفاق بناء خطني بقاع البحر الأ�سود‪ .‬كانت تقارير �سابقة اأفادت اأن �سعة كل خط �ستبلغ ‪ 15.75‬مليار‬ ‫مر مكعب �سنويا‪.‬‬ ‫واكد الرئي�س الركي رجب طيب اردوغان اإنه �سيجري ت�سريع م�سروع خط اأنابيب الغاز الطبيعي ترك‪-‬‬ ‫�سرمي وخطط اإقامة حمطة نووية تبنيها رو�سيا يف تركيا مع عودة العالقات بني البلدين اإىل طبيعتها‪.‬‬ ‫كانت رو�ساتوم فازت يف ‪ 2013‬بعقد قيمته ‪ 20‬مليار دولر لبناء اأربعة مفاعالت فيما كان �سي�سبح اأول حمطة‬ ‫نووية لركيا لكن البناء توقف بعد اأن اأ�سقطت تركيا مقاتلة رو�سية قرب احلدود ال�سورية العام املا�سي‬ ‫‪2016‬‬

‫‪Petroleum Today - November‬‬

‫‪5‬‬


‫توتال ت�صعى ال�صتثمار ‪ 200‬مليون دوالر يف م�صر خالل ‪� 5‬صنوات‬ ‫ق ��ال جمل�س ال ��وزراء امل�سري اإن م�س� �وؤويل توتال الفرن�سية للنف ��ط والغاز اأكدوا خ ��الل مقابلة مع رئي�س‬ ‫الوزراء �سريف اإ�سماعيل اأن ال�سركة �ست�سخ ‪ 200‬مليون دولر ا�ستثمارات جديدة يف البالد خالل اخلم�س‬ ‫�سنوات املقبلة‪.‬‬ ‫واأو�سح ميتلمان نائب رئي�س ال�سركة‪ ،‬اأن توتال حال ًيا بعد ال�ستحواذ على اأن�سطة الوقود التابعة ل�سركتي �سل‬ ‫و�سيفرون اأ�سبحت قوة رئي�سية يف ال�سوق امل�سري للزيت والطاقة‪ ،‬حيث حققت ال�سركة العام املا�سي ‪2015‬‬ ‫مبيعات و�سل حجمها اإىل ‪ 3.6‬مليون طن من منتجات الزيوت والبرول‪ ،‬تغطي ‪ %11‬من احتياجات الوقود‬ ‫بال�سوق بالإ�سافة اإىل ‪ %7‬حجم امل�ساركة ال�سوقية يف �سناعة زيوت املحركات"‪.‬‬ ‫تعم ��ل توت ��ال يف م�سر بخدم ��ات متوين ال�سي ��ارات وم�ستودع ��ات الوقود وت�سني ��ع وتعبئة الزي ��وت املعدنية‬ ‫للمحركات وخدمات متوين الطائرات بجانب ن�ساط ال�ستك�سافات البرولية‪.‬‬

‫جنوب الوادى تنتهى من اجراءات‬ ‫طرح م�صروع البحث املتكامل‬ ‫الذى يغطى املناطق املفتوحة‬

‫ق��ال الدكتور �سريف �سو�سة رئي�س �سركة جنوب‬ ‫ال��وادى القاب�سة للبرول اأنه مت ا�سناد ‪ 5‬مناطق‬ ‫ج��دي��دة للبحث ع��ن ال �ب��رول وال �غ��از ل�سركات‬ ‫اأمريكية وكندية وماليزية واجنليزية وم�سرية‬ ‫باإ�ستثمارات يزيد حدها الأدن��ى عن ‪ 100‬مليون‬ ‫دولر ‪ ،‬ه��ذا بالإ�سافة اإىل ط��رح مزايدة عاملية‬ ‫جديدة للبحث عن البرول والغاز فى ‪ 10‬مناطق‬ ‫جنوب خليج ال�سوي�س وال�سحراء الغربية وجارى‬ ‫حالي ًا تلقى العرو�س لالإ�ستثمار فى هذه املناطق‬ ‫حتى نهاية نوفمر‪.‬‬ ‫واأ��س��ار اإىل انهاء اج ��راءات ط��رح م�سروع البحث‬ ‫املتكامل ال��ذى يغطى املناطق املفتوحة بجنوب‬ ‫الوادى متهيد ًا لطرحه مع مطلع العام املاىل احلاىل‬ ‫لتجميع بيانات حديثة عن املناطق الواعدة متهيد ًا‬ ‫لطرحها م�ستقب ًال ف��ى م��زاي��دات عاملية للبحث‬ ‫والإ�ستك�ساف‪ ،‬كما يتم تدعيم هذا التوجه من خالل‬ ‫تنفيذ اج ��راءات للتعاقد م��ع هيئة امل��واد النووية‬ ‫للقيام مب�سروع م�سرك لإجراء عمليات م�سوحات‬ ‫جاذبية ومغناطي�سية لتغطية مناطق جنوب الوادى‪.‬‬ ‫‪4‬‬

‫‪2016‬‬

‫‪Petroleum Today - November‬‬

‫اأرامكو ال�صعودية متنح عقدا طويل االأجل ل�صركة باأبوظبي‬ ‫قالت �سركة النفط الوطنية العمالقة اأرامكو ال�سعودية اإنها اأر�ست عقدا طويل الأجل على �سركة‬ ‫الإن�ساءات البرولية الوطنية باأبوظبي للعمل يف من�ساآت اأرامكو البحرية‪.‬‬ ‫وقالت اأرامكو يف بيان خال من القيمة املالية اأو تفا�سيل العمل اإن �سركة الإن�ساءات البرولية‬ ‫�ست�ساهم يف بناء من�سات نفط وغاز بحرية وخطوط اأنابيب وكابالت كهرباء وغريها من‬ ‫البنية التحتية‪.‬‬ ‫مدة العقد �ستة اأعوام وقابل للتمديد اإىل ‪ 12‬عاما وهو خام�س عقد من هذا النوع توقعه اأرامكو‪.‬‬ ‫ففي يونيو من العام املا�سي منحت ال�سركة اأربعة عقود مماثلة ل�سركات هند�سية اأخرى‪.‬‬

‫‪ 8.7‬ملي��ون طن من اخل��ام تكررها العامرية واال�ص��كندرية للبرتول خالل عام‬ ‫قال املهند�س اأحمد جاد رئي�س �سركة العامرية لتكرير البرول اأن ال�سركة قامت بتكرير حواىل ‪ 3.9‬مليون طن‬ ‫خام لتوفري املنتجات البرولية مبعدلت تزيد على اخلطة امل�ستهدفة‪ ،‬واأنتجت حواىل ‪1.2‬مليون طن �سولر ‪،‬‬ ‫بالإ�سافة اإىل حواىل مليون طن من املازوت ‪ ،‬و‪ 574‬األف طن من البنزين ‪ ، 80‬و‪ 94‬األف طن من البوتاجاز ‪،‬‬ ‫و‪ 216‬األف طن من الكريو�سني‪ ،‬و‪ 64‬األف طن من الزيوت الأ�سا�سية واخلا�سة وال�سمع الرافينى اإىل جانب اإنتاج‬ ‫‪ 56‬األف طن من الألكيل بنزين و‪ 26‬األف طن من ال�سمع اخلام للت�سدير و‪ 72‬األف طن من املنتجات اخلا�سة و‪14‬‬ ‫األف طن من التولوين والزيت الطبى ‪ ،‬وبلغت ال�ستثمارات املنفذة حواىل ‪ 217‬مليون جنيه‪.‬‬ ‫كما ذكر املهند�س نبيل عفيفى رئي�س �سركة الأ�سكندرية للبرول اأن الن�ساط الإنتاجى على مدار العام �سهد‬ ‫معدلت اأداء متميزة نتج عنها زيادة كميات اخلام التى مت تكريرها بالوحدات الإنتاجية لت�سل اإىل حواىل ‪4.8‬‬ ‫مليون طن اأ�سهمت فى توفري منتجات برولية عالية اجلودة لتلبية جانب من احتياجات ال�سوق املحلى من ال�سولر‬ ‫والبوتاجاز واملازوت والنافتا والرباين والزيوت عالية اجلودة والأ�سفلت وال�سموع واملذيبات بالإ�سافة اإىل اإمداد‬ ‫ال�سركات ال�ستثمارية باحتياجاتها من مواد التغذية‪ ،‬وم�ساندة خطة الدولة لتنفيذ امل�سروع القومى للطرق بتوفري‬ ‫‪ 887‬األف طن بيوتامني ‪ ،‬كما قامت بت�سدير منتجات برولية قيمتها حواىل ‪ 236‬مليون دولر ‪.‬‬


‫املاءاملاء‬ ‫�صطح‬ ‫�صطح‬ ‫حتتحتت‬ ‫‪ 1000‬م‬ ‫‪ 1000‬م‬ ‫عمقها‬ ‫عمقها‬ ‫اال�صكندرية‬ ‫اال�صكندرية‬ ‫�صمال‬ ‫�صمال‬ ‫بحقول‬ ‫بحقول‬ ‫العميقة‬ ‫العميقة‬ ‫باملياه‬ ‫باملياه‬ ‫بئر ًابئر ًا‬ ‫‪2121‬‬ ‫حتفرحتفر‬ ‫بي بي بي‬ ‫التنفي �التنف‬ ‫الرئي� ��س‬ ‫الرئي� ��س‬ ‫�كاوى�كاوى‬ ‫ه�س �م ��ام م �‬ ‫املهند� �ه�س�س��ام‬ ‫املهند� ��س‬ ‫ق ��الق ��ال‬ ‫موعد بدء‬ ‫تعجي ��ل‬ ‫متي ��ل‬ ‫دولرأنه وامتأنهتعج‬ ‫دولر وا‬ ‫‪�11‬ارملي ��ار‬ ‫�واىلملي �‬ ‫�واىل ‪11‬‬ ‫�ذىي ��ذى ح � ح �‬ ‫‪12501250‬‬ ‫لي�سل اإىل‬ ‫لي�سل اإىل‬ ‫تدريجي� � ًا‬ ‫تدريجي� � ًا‬ ‫امل�سروع‬ ‫امل�سروع‬ ‫ويرتافإن �ت ��ع ا�اجإنت ��اج‬ ‫موعد بدء ويرتف ��ع‬ ‫حقولحقول‬ ‫�روع ��روع‬ ‫تنفيذ م�س‬ ‫تنفيذ م�س �‬ ‫مراحل‬ ‫مراحل‬ ‫‪ bp‬ان‬ ‫‪ bp‬ان‬ ‫ل�سرك ��ة‬ ‫ل�سرك ��ة‬ ‫الثالث من‬ ‫الربعالربع‬ ‫وليرا فى‬ ‫وليرا فى‬ ‫تور�ستور�س‬ ‫حقولحقول‬ ‫إنتاج من‬ ‫إنتاجل من‬ ‫�سمال�سمال ال ا‬ ‫‪ 2020/2019‬وما‬ ‫‪ 2020/2019‬وما‬ ‫غازعام‬ ‫غازعام‬ ‫يومي ًايومي ًا‬ ‫مكعبمكعب‬ ‫قدم قدم‬ ‫�وني ��ون‬ ‫الثالث من ملي � مل‬ ‫آبار قاع‬ ‫تكنولوجياتآبارالفوق‬ ‫تكنولوجيات ال‬ ‫أحدثأحدث‬ ‫�ستتم با‬ ‫�ستتم با‬ ‫ال�سكندرية‬ ‫ال�سكندرية‬ ‫قدم قدم‬ ‫مليونمليون‬ ‫‪600 600‬‬ ‫�واىل�واىل‬ ‫إنتاج ح �‬ ‫إنتاجل ح �‬ ‫القادم‬ ‫القادم ل‬ ‫�امع ��ام‬ ‫فوق قاع الع � ال‬ ‫املتكثفات‪.‬‬ ‫املتكثفات‪.‬‬ ‫من ًا من‬ ‫يومي ًايومي‬ ‫برميلبرميل‬ ‫‪ 25-20‬األف‬ ‫‪ 25-20‬األف‬ ‫يراوح بني‬ ‫يومي ًايومي ًا يراوح بني‬ ‫ً‬ ‫ً‬ ‫العميقة‬ ‫العميقة‬ ‫باملياهباملياه‬ ‫‪ 21‬بئرا‬ ‫واكمالبئرا‬ ‫واكمال ‪21‬‬ ‫حفر حفر‬ ‫خاللخالل‬ ‫من�ر من‬ ‫البح �‬ ‫البح ��ر‬ ‫البحرالبحر‬ ‫�سطح�سطح‬ ‫حتتحتت‬ ‫‪ 1000‬مر‬ ‫‪ 1000‬مر‬ ‫عمقها اإىل‬ ‫عمقها اإىل‬ ‫ي�سلي�سل‬ ‫والتىوالتى‬ ‫حقلىحقلى‬ ‫غازاتغازات‬ ‫ملعاجلة‬ ‫ملعاجلة‬ ‫ر�سيدر�سيد‬ ‫ت�سهيالت‬ ‫ت�سهيالت‬ ‫إعادةي �تا�لأهي ��ل‬ ‫إعادة تاأه‬ ‫وا وا‬ ‫غازاتغازات‬ ‫ملعاجلة‬ ‫ملعاجلة‬ ‫جديدةجديدة‬ ‫حمط ��ة‬ ‫إن�ساءط ��ة‬ ‫إن�ساء حم‬ ‫فيوم وا‬ ‫فيوم وا‬ ‫جي ��زهجي �‪�-‬زه ‪-‬‬ ‫كليو مر‬ ‫‪ 35‬مر‬ ‫بطولكليو‬ ‫بطول ‪35‬‬ ‫أنابيبأنابيب‬ ‫خط اخط ا‬ ‫ريفنيإن�‪،‬س �وا�اءإن�س ��اء‬ ‫ريفني ‪ ،‬وا‬ ‫حقل حقل‬ ‫حقولحقول‬ ‫أنابيبأنابيب‬ ‫مع�سخ �مع�طخا ��ط ا‬ ‫وتارو� �‬ ‫وتارو� ��س‬ ‫�راي ��را‬ ‫حقلى ل‬ ‫حقلى لي �‬ ‫لرب ��طلرب ��ط‬ ‫الرل�س ‪،‬‬ ‫الرل�س ‪،‬‬ ‫بت�سهيالت‬ ‫بت�سهيالت‬ ‫احلقل ��ني‬ ‫احلقل ��ني‬ ‫إنتاجاإنتاج‬ ‫ملعاجلة‬ ‫ملعاجلة ا‬ ‫الرل�س‬ ‫الرل�س‬ ‫‪ 70‬كيلو‬ ‫بطولكيلو‬ ‫بطول ‪70‬‬ ‫أنابيبأنابيب‬ ‫خطى ا‬ ‫خطى ا‬ ‫إن�ساءإن�ساء‬ ‫إ�سافةااإىل ا‬ ‫إ�سافة اإىل‬ ‫هذا بال‬ ‫هذا بال‬ ‫ملعاجلتها‬ ‫ملعاجلتها‬ ‫وريفنيوريفني‬ ‫وفيوموفيوم‬ ‫جيزةجيزة‬ ‫حقولحقول‬ ‫غازاتغازات‬ ‫لنقل لنقل‬ ‫مر مر‬ ‫ر�سيد ‪.‬‬ ‫ر�سيد ‪.‬‬ ‫و�سرقو�سرق‬ ‫ر�سيدر�سيد‬ ‫بت�سهيالت‬ ‫بت�سهيالت‬ ‫للم�سروع‬ ‫للم�سروع‬ ‫ال�ستثمارية‬ ‫ال�ستثمارية‬ ‫التكلف ��ة‬ ‫التكلف ��ة‬ ‫إجماىل‬ ‫إجماىل‬ ‫أ�سافا اأن ا‬ ‫أ�ساف اأن‬ ‫وا وا‬

‫‪2016-2015‬‬ ‫‪2016-2015‬‬ ‫دوالر يف‬ ‫دوالر يف‬ ‫مليارمليار‬ ‫‪6.66.6‬‬ ‫م�صرم�صر‬ ‫أجنبية يف‬ ‫أجنبية يف‬ ‫النفطال اال‬ ‫النفط ا‬ ‫�صركات‬ ‫�صركات‬ ‫ا�صتثمارات‬ ‫ا�صتثمارات‬

‫م�سر‪".‬‬ ‫م�سر‪".‬‬ ‫يف يف‬ ‫‪.2015-2014‬‬ ‫‪.2015-2014‬‬ ‫دولر يف‬ ‫دولر يف‬ ‫�المل �اإن�ال اإن مليارمليار‬ ‫�ارق ا‬ ‫�ارق� امل �‬ ‫�ري ط‬ ‫�ريس �ط �‬ ‫امل�س �امل�‬ ‫�رول�رول‬ ‫�ال��روزيال�ب ��ر الب �‬ ‫ق ��الق �وزي‬ ‫�سركات‬ ‫�سركات‬ ‫�ارات�ارات‬ ‫با�ستثم �‬ ‫با�ستثم �‬ ‫الو�سول‬ ‫الو�سول‬ ‫م�سرم�سر‬ ‫�دف��دف‬ ‫وت�سته‬ ‫الرغمالرغم وت�سته �‬ ‫على على‬ ‫�سحفية‬ ‫�سحفية‬ ‫ت�سري�اتح ��ات‬ ‫ت�سريح �‬ ‫املال يف‬ ‫املال يف‬ ‫وا�س ��ار‬ ‫البالدالبالد وا�س ��ار‬ ‫يف�ة يف‬ ‫أجنبي �‬ ‫أجنبلي ��ة‬ ‫النفط ا‬ ‫النفط ال‬ ‫�ركات�ركات‬ ‫�ارات �س �‬ ‫�ارات �س �‬ ‫ا�ستثم �‬ ‫ا�ستثم �‬ ‫حوايلحوايل‬ ‫�الد اإىل‬ ‫�الد �اإىل‬ ‫يف�ةالب �يف الب‬ ‫العامل �‬ ‫العامل ��ة‬ ‫أجنبي ��ة‬ ‫أجنبلي ��ة‬ ‫�طفا�ل�ط ا‬ ‫العامالعام النف �الن‬ ‫خاللخالل‬ ‫العاملية‬ ‫العاملية‬ ‫�طف ��ط‬ ‫أ�سعارف �الن‬ ‫أ�سعار الن‬ ‫انخفا�س ا‬ ‫انخفا�س ا‬ ‫‪ -2015‬م ��نم ��ن‬ ‫‪-2015‬‬ ‫املاليةاملالية‬ ‫ال�سن ��ة‬ ‫يفن ��ة‬ ‫دولرال�س‬ ‫دولر يف‬ ‫‪�6.6‬ارملي ��ار‬ ‫‪ 6.6‬ملي �‬ ‫بلغ ��تبلغ ��ت‬ ‫احلالية‬ ‫احلالية‬ ‫املالي ��ة‬ ‫ال�سنةي ��ة‬ ‫ال�سنة املال‬ ‫�الل��الل‬ ‫دولر خ‬ ‫دولر خ �‬ ‫‪��12.1‬ارملي ��ار‬ ‫مليارمليار ‪ 12.1‬ملي‬ ‫‪6.66.6‬‬ ‫أنفقواأنفقوا‬ ‫أجانب ا‬ ‫أجانب ا‬ ‫ال�سركاء ال‬ ‫ال�سركاء ال‬ ‫املا�سي اأنإل اأن‬ ‫وبلغتوبلغت املا�سي اإل ا‬ ‫العاملية‬ ‫العاملية‬ ‫النفطالنفط‬ ‫أ�سعارأ�سعار‬ ‫انخفا�س ا‬ ‫انخفا�س ا‬ ‫رغمرغم‬ ‫‪20162016‬‬ ‫‪.2017-2016‬‬ ‫والتنمية ‪.2017-2016‬‬ ‫والتنمية‬ ‫وال�ستك�ساف‬ ‫وال�ستك�ساف‬ ‫�اتح �الب�ثح ��ث‬ ‫�اتي �الب‬ ‫يفي �عمل‬ ‫دولرعمل‬ ‫‪ 7.57.5‬دولر يف‬ ‫م�سرم�سر‬ ‫العاملية يف‬ ‫العاملية يف‬ ‫النفطالنفط‬ ‫�سركات‬ ‫�سركات‬ ‫ا�ستثمارات‬ ‫ا�ستثمارات‬

‫العمالق‬ ‫العمالق‬ ‫ظهرظهر‬ ‫حلقل‬ ‫حلقل‬ ‫املاءاملاء‬ ‫�صطح‬ ‫�صطح‬ ‫حتتحتت‬ ‫عميقة‬ ‫عميقة‬ ‫بئربئر‬ ‫أ�ساأ�س‬ ‫‪ 20‬ر‬ ‫‪ 20‬را‬ ‫وتركيب‬ ‫وتركيب‬ ‫بئربئر‬ ‫‪2020‬‬ ‫وا�صتكمال‬ ‫وا�صتكمال‬ ‫حفرحفر‬ ‫برتوبل ‪:‬‬ ‫برتوبل ‪:‬‬ ‫وا�ستكمال ‪20‬‬ ‫وا�ستكمال ‪20‬‬ ‫ي�سمح�ف�ل��رحف ��ر‬ ‫�روعم ��ل‬ ‫�روع� ي�س‬ ‫امل�أنس �امل�س‬ ‫�اف ا‬ ‫�افس �اأن‬ ‫واأ�س �واأ�‬ ‫�سطح�سطح‬ ‫عميقة�تحت ��ت‬ ‫عميقة حت �‬ ‫‪ 20‬ر�ساأب�ئ� ��س�ر بئ ��ر‬ ‫وتركي �‪�20‬براأ� �‬ ‫وتركي ��ب‬ ‫بئ ��ر ًابئ ��ر ًا‬ ‫واحلماية‬ ‫واحلماية‬ ‫القيا� ��س‬ ‫القيا� ��س‬ ‫�دات�دات‬ ‫إ�سااف �إىل�ة امع �إىل مع �‬ ‫إ�سالف ��ة‬ ‫امل ��اءامل‪ �،‬با�اءل‪ ،‬با‬ ‫الغازات�ن ام �ل�نآبارالآبار‬ ‫الغازات م �‬ ‫�سبكة�لنق ��ل‬ ‫�سبكة نق �‬ ‫وتركي ��ب‬ ‫وتركي ��ب‬ ‫والتحك ��م‬ ‫والتحك ��م‬ ‫�الت�الت‬ ‫ت�سهي �ت�سهي �‬ ‫حمط ��ة‬ ‫إىلط ��ة‬ ‫�ار اث �إىل�م احم‬ ‫�ات� ا�ارلآبث� ��م‬ ‫�اتع �الآب‬ ‫جمم‬ ‫جممع �‬ ‫اإىل اإىل‬ ‫وت�سنيع‬ ‫وت�سنيع‬ ‫وتوري ��د‬ ‫وتوري ��د‬ ‫ت�سميم‬ ‫ت�سميم‬ ‫وكذل ��ك‬ ‫وكذ�ةل ��ك‬ ‫الري �‬ ‫الري ��ة‬ ‫الإنت �ال�اجإنت ��اج‬ ‫�ونك ��ون‬ ‫والت�ة ��ىوالت ��ست�ىك ��ست‬ ‫البحري �‬ ‫البحري ��ة‬ ‫التحك �ظه�م��رظه ��ر‬ ‫التحك ��م‬ ‫من�س ��ة‬ ‫من�س ��ة‬ ‫ا�ستثماراته ما‬ ‫�راوح�راوح‬ ‫الطبيعى� ‪ ،‬وت �‬ ‫الطبيعى ‪ ،‬وت‬ ‫الغازالغاز‬ ‫ح�سنح�سن م ��ن م ��ن‬ ‫عاطفعاطف‬ ‫املهند�س‬ ‫املهند�س‬ ‫بروب ��ل‬ ‫بروب ��ل‬ ‫�سركة�سركة‬ ‫رئي�سرئي�س‬ ‫اأو�س �ا�حأو�س ��ح‬ ‫�طق‪ �،‬با‬ ‫آبارالفق �‬ ‫التحكم لال‬ ‫ا�ستثماراتهبنيما‪12‬بني ‪ 12‬جمهزة باأج‬ ‫إ�سافةإ�سافة‬ ‫�طل‪ ،‬بال‬ ‫آبار ف‬ ‫التحكم ل‬ ‫�زةه ��زة‬ ‫جمهزةهب�اأج‬ ‫امل�سروع ‪ ،‬وا‬ ‫عمر عمر‬ ‫مدارمدار‬ ‫دولر�ىعل ��ى‬ ‫دولر عل �‬ ‫مليارمليار‬ ‫حتقيقه ‪16 -16 -‬‬ ‫حتقيقه‬ ‫اكت�ساف متغاز مت‬ ‫اكت�ساف غاز‬ ‫أ�سخمأ�سخم‬ ‫ظهر�د ُياع ��د ا‬ ‫ظهر ُيع �‬ ‫ك�سفك�سف‬ ‫اأن اأن‬ ‫كهروهيدروليكى من‬ ‫كابالتك ��م‬ ‫كابالت حت‬ ‫إىلي ��ب‬ ‫امل�سروعأنه‪ ،‬وامنأنه من اإىل اترك‬ ‫كهروهيدروليكى من‬ ‫حتك ��م‬ ‫تركي‪��3‬ب ‪3‬‬ ‫ً‬ ‫ً‬ ‫امل�سروعا وفقا‬ ‫امل�سروع وفق‬ ‫من�ر من‬ ‫إنتاجك ��راملبك �‬ ‫إنتاجل املب‬ ‫املخطط البدء ا‬ ‫عمليات املخطط بدء‬ ‫عمليات‬ ‫�دءب ��دء‬ ‫املتو�سط ب �منذ‬ ‫املتو�سط منذ‬ ‫البح ��ر‬ ‫ومنطقةح ��ر‬ ‫ومنطقة الب‬ ‫مب�س ��ر‬ ‫مب�س ��ر‬ ‫للتحكم فى‬ ‫البحرية اإىل‬ ‫خلطةخلطة من�سة ظه‬ ‫للتحكم فى‬ ‫البحرية ارووإىلؤ�سرواولؤ�سآبارالآبار‬ ‫من�سة��رظه ��ر‬ ‫مبعدلمبعدل‬ ‫‪20172017‬‬ ‫نهاية�امع ��ام‬ ‫نهاية ع �‬ ‫�ددة فى‬ ‫�ددة� فى‬ ‫التنمية �املح‬ ‫التعاون التنمية املح‬ ‫التعاون‬ ‫نتيجةنتيجة‬ ‫حتققحتقق‬ ‫والذىوالذى‬ ‫والغازوالغاز‬ ‫البرول‬ ‫البرول‬ ‫البحث عن‬ ‫البحث عن‬ ‫ت�سنيع‬ ‫امل�سروع‬ ‫وتوريدوتوريد‬ ‫ت�سنيع‬ ‫امل�سروع‬ ‫ي�سملي�سمل‬ ‫كما‪ ،‬كما‬ ‫إنتاجل ‪،‬إنتاج‬ ‫مليارمليار الآب � ا�ارلآب �وال�ار وا‬ ‫يومي ًايومي ً‬ ‫إنتاجلإنتاج‬ ‫يت�ساعد ا‬ ‫يت�ساعد ال‬ ‫على اأن‬ ‫علىا اأن‬ ‫مكعب غاز‬ ‫مكعب غاز‬ ‫إيطالية‪ ،‬قدم قدم‬ ‫إيطالية‪،‬‬ ‫و�سركة ا�ىإيان �ل�ى ال‬ ‫و�سركة اإين �‬ ‫�رول�رول‬ ‫بني ق�اعطال�ب ��اع الب �‬ ‫بني�رقط �‬ ‫املثم ��راملثم �‬ ‫الري ��ة‬ ‫للت�سهيالت‬ ‫لي�سللي�سل حمط ��ة‬ ‫على على‬ ‫حتتوىحتتوى‬ ‫والتىوالتى‬ ‫الري ��ة‬ ‫للت�سهيالت‬ ‫ظهرظهر‬ ‫حمط ��ة‬ ‫مليار قدم‬ ‫مليار قدم‬ ‫بنحو ‪7‬ر‪2‬‬ ‫بنحو ‪7‬ر‪2‬‬ ‫تقدرتقدر‬ ‫مبعدلت‬ ‫مبعدلت‬ ‫ذروتهذروته‬ ‫مكعبمكعب اإىل اإىل‬ ‫قدم قدم‬ ‫تريليون‬ ‫تريليون‬ ‫�واىل ‪30‬‬ ‫�واىل ‪30‬‬ ‫احتياطياته بح �‬ ‫احتياطياته بح �‬ ‫�درق ��در‬ ‫وتق � وت‬ ‫اخلدمات‬ ‫وحدات‬ ‫والف�سل‬ ‫املعاجلة‬ ‫مكعبمكعب معدات‬ ‫اخلدمات‬ ‫وحدات‬ ‫�ساملة�ساملة‬ ‫والف�سل‬ ‫املعاجلة‬ ‫معدات‬ ‫‪. 2019‬‬ ‫‪. 2019‬‬ ‫نهاية عام‬ ‫نهاية عام‬ ‫يومي ًا فى‬ ‫املحلىاملحلى يومي ًا فى‬ ‫ال�سوقال�سوق‬ ‫باحتيا�اتج ��ات‬ ‫باحتياج �‬ ‫للوف ��اء‬ ‫�ستخ�س�س��اء‬ ‫�ستخ�س�س للوف‬ ‫غ ��ازغ ��از‬ ‫والتخزين ‪.‬‬ ‫واحلماية‬ ‫والتخزين ‪.‬‬ ‫واحلماية‬ ‫‪Petroleum‬‬ ‫‪Today‬‬ ‫‪Today‬‬ ‫‪- November‬‬ ‫‪- November‬‬ ‫‪20162016‬‬ ‫‪3 3Petroleum‬‬


‫املال ‪ :‬ن�صتهدف الو�صول باإنتاج الغاز اإىل نحو ‪ 5‬مليارات قدم يف ‪2018-2017‬‬ ‫قال وزير البرول طارق املال اإن م�سر ت�ستهدف‬ ‫زي ��ادة اإنتاجها م��ن ال�غ��از الطبيعي اإىل خم�سة‬ ‫مليارات قدم مكعبة يوميا خالل ‪ 2018-2017‬من‬ ‫‪ 4.35‬مليار قدم حاليا واأ�ساف الوزير يف مقابلة‬ ‫اجرتها وكالة النباء العاملية رويرز اأن ا�ستهالك‬ ‫البالد من الغاز الطبيعي يوميا يبلغ "نحو ‪5.2‬‬ ‫مليار قدم مكعبة والنتاج ‪ 4.350‬مليار قدم‪.‬‬ ‫وقال مع دخول حقل ُظهر نهاية العام املقبل واأي�سا‬ ‫م�سروعات �سمال ال�سكندرية ويف ظل التناق�س‬ ‫الطبيعي لالآبار ن�ستهدف اأن ي�سل الإنتاج اإىل ‪5‬‬ ‫مليارات قدم على اأن تزيد اإىل اأكرث من ‪ 7.5‬مليار‬

‫قدم يف ‪".2021-2020‬‬ ‫وق��ال الوزير "اإيني �ستبداأ اإنتاج نحو مليار قدم‬ ‫مكعبة يوميا من ُظهر بنهاية ‪ 2017‬بجانب انتاج‬ ‫�سركة بي‪.‬بي ما بني ‪ 450‬و‪ 500‬مليون قدم مكعبة‬ ‫يوميا وذك��ر اأن �سركة اإدي�سون الإيطالية �ستبداأ‬ ‫اأعمال احلفر بجوار امتياز ُظهر يف مطلع ‪.2017‬‬ ‫وت�ستهدف م�سر ال �ع��ودة جم��ددا اإىل الكتفاء‬ ‫الذاتي من اإنتاج الغاز الطبيعي بحلول عام ‪2020‬‬ ‫بل واأن ت�سبح مركزا اإقليميا لتجارة الطاقة‪.‬‬ ‫وقال املال اأن م�سر انتهت من مناق�سة ا�ستئجار‬ ‫�سفينة التغييز الثالثة لكن مل تعلن عن ال�سركة‬

‫هيئة البرتول حتقق ‪38‬‬ ‫ً‬ ‫ً‬ ‫ً‬ ‫جديدا خالل‬ ‫برتوليا‬ ‫ك�صفا‬ ‫العام ‪2016/2015‬‬ ‫ا��س�ت�ع��ر���س امل�ه�ن��د���س ط��ارق‬ ‫احل��دي��دى الرئي�س التنفيذى‬ ‫ل�ه�ي�ئ��ة ال� �ب ��رول اأه� ��م نتائج‬ ‫الأع�� � �م� � ��ال ل� �ل� �ع���ام امل � ��اىل‬ ‫‪ 2016/2015‬م�سري ًا اإىل اأن برنامج عمل الهيئة ا�ستهدف حتقيق الدور املنوط بها فى‬ ‫تعزيز الإنتاج البروىل وتاأمني احتياجات ال�سوق املحلى من املنتجات البرولية والغاز‬ ‫الطبيعى‪.‬‬ ‫قال احلديدى ان الهيئة حققت ‪ 38‬ك�سف ًا برولي ًا جديد ًا خالل العام بواقع ‪ 24‬ك�سفاً‬ ‫للزيت اخلام و ‪ 14‬ك�سف ًا للغاز الطبيعى للم�ساهمة فى زيادة اإحتياطيات واإنتاج البرول‬ ‫والغاز ‪ ،‬وبلغ متو�سط الإنتاج البروىل حواىل ‪ 671‬الف برميل زيت خام ومتكثفات‬ ‫يومي ًا خالل العام �ساهمت منطقة ال�سحراء الغربية بنحو ‪ %56‬منها‪ ،‬وا�سار ان الهيئة‬ ‫وقعت ‪ 8‬اتفاقيات للبحث عن البرول والغاز واإنتاجهما باإ�ستثمارات ‪2‬ر‪ 2‬مليار دولر‬ ‫بالإ�سافة اإىل ‪ 7‬م�سروعات اتفاقيات فى مرحلة الإجراءات وهو ما �ساهم فى رفع عدد‬ ‫الإتفاقيات التى ابرمتها الهيئة خالل العامني الأخريين اإىل ‪ 24‬اتفاقية‪.‬‬ ‫‪2‬‬

‫‪2016‬‬

‫‪Petroleum Today - November‬‬

‫الفائزة بعد‪.‬‬ ‫وتابع "ن�ستهدف و�سول �سفينة التغييز الثالثة قبل‬ ‫نهاية يونيو ‪ 2017‬ل�سد احتياج حمطات كهرباء‬ ‫�سيمن�س من الغاز‪".‬‬

‫م�صر تنفذ ‪ 7‬م�صروعات برتوكيماوية با�صتثمارات‬ ‫‪ 7.5‬مليار دوالر‬ ‫اأو�سح وزي��ر البرول اأن القطاع جنح فى تنفيذ ‪ 7‬م�سروعات‬ ‫مبحافظات ال�سوي�س وبور�سعيد ودمياط والأ�سكندرية فى اإطار‬ ‫اخلطة القومية للبروكيماويات‪ ،‬بلغ اإجماىل ا�ستثماراتها حواىل‬ ‫‪5‬ر‪ 7‬مليار دولر من خالل �سراكات عاملية وحملية‪ ،‬حتقق اإيرادات‬ ‫�سنوية ت�سل اإىل حواىل ‪ 3‬مليار دولر وتبلغ طاقتها الإنتاجية ‪5‬‬ ‫مليون ط��ن م��ن املنتجات ال�ب��روك�ي�م��اوي��ة �ساهمت ف��ى تلبية‬ ‫احتياجات ال�سوق املحلى واإحالل الواردات وتوفري م�سدر دولرى‪،‬‬ ‫ف�س ًال عن توفري فر�س عمل جديدة وهو ماينعك�س اإيجاب ًا على‬ ‫القت�ساد امل�سرى‪.‬جاء ذلك خالل رئا�سة الوزير لأعمال اجلمعية‬ ‫العامة لل�سركة امل�سرية القاب�سة للبروكيماويات لعتماد نتائج‬ ‫الأعمال للعام املاىل ‪ .2016/2015‬وا�ستعر�س املهند�س حممد‬ ‫�سعفان رئي�س ال�سركة املوقف احلايل للم�سروعات التى مت تنفيذها‬ ‫واإج��راءات املتابعة واأعمال التطوير والتحديث لل�سركات القائمة‬ ‫وتاأمني احتياجاتها من امل��واد اخل��ام واللتزام باإجراءت الأمن‬ ‫وال�سالمة وال�سحة املهنية ل�سمان ا�ستمرار الت�سغيل الآمن‪.‬‬


MY DESIGN

www.hoerbiger.com




Articles inside

Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.