Limit and continuity

Page 1


CONTINUITY

FUNCTION

BASIC RULES

LIMIT

LIMIT AS FIRST PRINCIPLES

DERIVATIVE

COMPUTING LIMIT

DEFINITION

IMPLICIT DIFFERENTIATION

RULES OF DIFFERENTIATION

TECHNIQUES OF DIFFERENTIATION

LIMIT OF FORM

CHAIN RULE FACTORIZATION

ADDITION

ALGEBRAIC FUNCTION

SUBTRACTION

EXPONENTIAL FUNCTION

MULTIPLICATION

LOGARITHMIC FUNCTION

QUOTIENT

TRIGONOMETRIC FUNCTION

RATIONALIZATION


Obtain the limit of a function intuitively and computing limits including end behaviour

Determine the continuity of a function based on the definition Find the derivative of a function using the first principle method Find the derivatives using rules of differentiation for polynomial, trigonometric, exponential and logarithmic functions

Find the derivative of implicit function


Limits are used to described how a function behaves as the independent variable x approaches a given value. This concept helps us to describe, in a precise way:

the behaviour of f(x) when x is close to but not equal to a particular value a.


Complete the following table. Discuss the behaviour of the values of f(x)

when x is closed to 1. x

f(x) = x2 + 2

0.9

0.99

0.999

0.9999

1

1.0001

1.001

1.01

1.1


Discuss the behaviour of the values of f(x) when x is closed to 1. x approaching 1 from right

x approaching 1 from left x

0.9

0.99

0.999

f(x) = x2 + 2

2.81

2.9801 2.998001

0.9999

1

1.0001

1.001

1.01

1.1

2.99980001

3

3.00020001

3.002001

3.0201

3.21

What are the values of f(x) when x approaches 1 from the left i.e. through values that are less than 1?

Ans: 3

What are the values of f(x) when x approaches 1 from the right i.e. through values that are more than 1?

Ans: 3


f ( x)  x 2  2

lim ( x  2)  lim ( x  2)  3 2

2

x 1

x 1

lim( x  2)  3 2

x 1


Evaluate the values of f(x) for the given values of x. Discuss the behaviour of the values of f(x) when x is closed to 1. x

0.5

0.75

0.9

0.99

0.999

1

x3  1 f ( x)  x 1

1.001

1.01

1.1

1.25

1.5


x

0.5

0.75

0.9

0.99

0.999

1

x3  1 f ( x)  x 1

1.75

2.3125

2.71

2.9701

2.997001

?

1.001

1.01

1.1

1.25

1.5

3.003001

3.0301

3.31

3.8125

4.75

What are the values of f(x) when x approaches 1 from the left

i.e. through values that are less than 1? Ans: 3 What are the values of f(x) when x approaches 1 from the

right i.e. through values that are more than 1? Ans: 3


x3  1 lim 3 x 1 x  1

1 x approaching 1 from left

x approaching 1 from right


Graphical Interpretation y = f(x) A function f(x) approaches a limit L as x approaches a

L

lim f x   L

x a

a

Intuitive Meaning We can make f(x) as close to L as desired by choosing x sufficiently close to a, and x  a.

lim f x   L

x a


WHEN DOES A LIMIT EXIST ? the values of f(x) must approach the same

1

number on both sides.

The existence of a limit at ‘a’ has nothing to

2

do with the value of the function at ‘a’. In fact , ‘a’ may not even be the domain of f.

3

However, the function must be defined on both sides of ‘a’.


Intuitive Meaning

(righthand limit)

We can make f(x) as close to L as desired by choosing x sufficiently close to a, and x>a

Graphical Interpretation Let L be any real number. Suppose that f(x) is defined near a for x > a and that as x gets close to a, f(x) gets close to L, written as

lim f x   L

x a

y = f(x)

L lim f x   L

x a

a


Intuitive Meaning

(left- hand limit)

We can make f(x) as close to L asdesired by choosing x sufficiently close to a, and x<a

Graphical Interpretation Let L be any real number. Suppose that f(x) is defined near a for x<a and that as x gets close to a, f(x) gets close to L, written as

lim f x   L

x a

y = f(x)

L

a

lim- f x   L

x a


A function f (x) has a limit as x approaches a if and only if it has left-hand and right-hand limits exists and they are equal.


For the functions in the figures below, find the one sided and two sided limits at x=1 if it exist


Solution f(1)=2

lim f(x)  3

x 1

lim f(x)  1

x 1-

lim f(x)  lim f ( x )

x 1-

x 1

Therefore, the limit does not exist at x = 1.


Solution lim f(x)  3

f(1)=1

x 1

lim f(x)  1

x 1-

lim f(x)  lim f ( x )

x 1-

x 1

Therefore, the limit does not exist at x = 1.


Solution

f(1)=does not exist

lim f(x)  3

x 1

lim f(x)  1

x 1-

lim f(x)  lim f ( x )

x 1-

x 1

Therefore, the limit does not exist at x = 1.


For the function in the figure below, find the one sided and two sided limits at (a) x= -1, and (b) x=0 if it exist.


Solution f(-1)=0

lim f(x)  0

x 1

lim - f(x)  0

x  -1

lim f(x)  lim f ( x )  0 x -1

x -1-

 lim f(x)  0 x  -1


Solution f(0)=0

lim f(x)  0

x 0

lim - f(x)  -1

x -0

lim f(x)  lim f ( x )

x 0

-

x 0

 lim f(x) does not exist x0


For the function graphed in the accompany figure, find (i) lim f ( x )

(ii) lim f ( x )

(iii) lim f ( x )

(iv) lim f ( x )

x0

x 2 

y

x 2

x2

4

(v) f(2) 1


Solution (i)

lim f ( x )

y

x0

does not exist

(v) f(2) = 4 4

1 2 (iv) lim f ( x )  1 x 2

(iii) lim f ( x )  1 x 2

(ii) lim f ( x )  1  x 2


PROPERTIES OF LIMITS Assume that k is a constant Constant rule Limit of x rule Multiple rule

Sum and Difference rule

lim k  k

x a

lim x  a

x a

lim k f ( x )  k lim f ( x )

x a

x a

lim f ( x )  g( x )  lim f ( x )  lim g( x )

x a

x a

x a


PROPERTIES OF LIMITS Product rule

    lim f ( x ) g( x )   lim f ( x )  lim g( x ) x a x a  x a 

Quotient rule

lim f ( x ) f ( x ) x a lim g( x )  x a lim g( x ) x a lim

n

x a

f(x)  n lim f(x) x a

if lim g(x)  0 xa ,

Power rule

if lim f(x)  0 when n is even x a


Evaluate a) b)

c)

lim k  k

lim 15  15

x a

x 2

lim x

x  3

lim x  a

 3

x a

lim 3 x  5  lim 3 x  lim 5 x 1

x 1

x 1

lim k f ( x)  k lim f ( x)

x a

 3 lim x  lim 5 x 1

x 1

= 3(1) – 5 = - 2

x a


    lim f ( x ) g( x )   lim f ( x )  lim g( x ) x a x a  x a 

d)

lim (2x  3)( x  4)  lim (2 x  3)  lim ( x  4) x 3

x 3

lim f ( x)  g( x)  lim f ( x)  lim g( x)

x a

x a

x a

x 3

 ( lim 2x  lim 3)  ( lim x  lim 4) x 3

x 3

x 3

x 3

 (2 lim x  lim 3)  ( lim x  lim 4) x 3

x 3

x 3

= [2(3) + 3].[3 – 4] =-9

e)

lim x2

(2 x  5) 4

 (2(2)  5) =1

4

x 3


f) lim x  2

2x 1 3x  4 

lim (2 x  1)

x  2

lim (3x  4)

x  2

lim 2x  lim 1

x  2

lim 3 x  lim 4

x  2

x  2

x  2

2 lim x  lim 1 x  2

x  2

3 lim x  lim 4 x  2

2( 2)  1  3( 2)  4 5  2

x  2

lim f ( x ) f ( x ) x a lim g( x )  x a lim g( x ) x a

if lim g(x)  0 xa



How do you evaluate limits?

Evaluate means you should give a numerical answer


A. LIMITS OF POLYNOMIAL FUNCTIONS Theorem: If f is a polynomial function and a is a real number, then

lim f ( x )  f (a)

x a


Evaluate a) lim x 3  5x  1  f ( 2) x 2

 23  5( 2)  1

NOTE For values of the function for which f(c) is defined, the limit can be found by substitution.

 3 b) xlim  2

3x  6  f ( 2) 2

 3( 2)  6 2

 6


B. LIMITS OF RATIONAL FUNCTIONS Theorem:

p( x ) Let f x   be a rational q( x ) function and a be any real number.


LIMITS OF RATIONAL FUNCTIONS p( x ) f x   q( x )

CASE 1 : If q(a)  0 then lim f ( x )  f (a) x a

CASE 2 : If q(a)=0 but p(a) 0 then lim f ( x ) does not exist xa

CASE 3 : If q(a) = 0 and p(a) = 0, (indeterminate form)


3x  2 Find lim x 2 x 1 2

TIPS

2 3x  2 3 ( 2 )  2 lim  lim x 2 x 1 x 2 2 1 14  1 2

 14


5x  x  1 Find lim x 3 x3 2

TIPS

5x 2  x  1 lim  lim x 3 x 3 x3

5(3) 2  3  1 33

49  0

q(3) = 0 but p(3)  49  0

5x  x  1  lim (does not exist) x 3 x3 2

The limit may be +

The limit may be - The limit may be ±


CASE 1 : limit may be + (increases without bound)

1 y 2 ( x  a)

lim x a 

lim x a 

1   2 x  a  1   lim 2 x  a ( x  a)

1   2 x  a 


CASE 2 : The limit may be - (decreases without bound)

1 y ( x  a) 2

lim x a 

1   2 lim x  a  x a 

1   2 x  a 

lim x a

1   2 ( x  a)


CASE 3 :

The limit may be + from one side and -

from the other side (the two sided limit does not exist)

y

lim x a-

1 xa

1   xa

1   lim xa x a



px  f x   qx  If q(a) = 0 and p(a) = 0,

0 f x   0

indeterminate form


x2  9 Find lim x 3 x  3 TIPS

x 2  9 (3 ) 2  9 0 lim   x 3 x  3 33 0 x2  9 ( x  3)( x  3)  lim lim x 3 x3 x 3 x  3

 lim (x  3) x 3

6

Substitution indeterminate form Factorization


x 2  3 x  10

(5) 2  3(5)  10

0 lim 2  lim  2 x 5 x  10 x  25 x 5 (5)  10(5)  25 0

Find

lim

x  3 x  10 2

lim

x 5

 x  2x  5   lim 2 x  10 x  25 x 5 x  5 x  5  x  3 x  10 2

x 5

x2 7  lim  x 5 x  5 0

x  10 x  25 2

x2 lim   x 5 x5

Hence,

lim

x 5

x2 lim   x 5 x5

x 2  3x  10 x  10 x  25 2

does not exist.


lim

x 3

x 3  x3

3 3 0  33 0

indeterminate form

Factorization won’t work

Find

lim

x 3

x 3 x3

lim

x  3

x 3  lim x  3 x 3    

x 3 x 3  x 3 x 3 x 3 lim x  3  x  3 x 3 1 lim x  3 x 3 1 3 3 1 2 3

Rationalization (Conjugate)


lim

x 0

Find lim

x 0

x x  16  4

0

lim

x x  16  4

x

x 0  x0 16  4 0  16  4 0

0

0  0  16  4 0

 lim

x 0

x x  16  4

x x  16  4  lim x 0 x  16  16  lim x  16  4 x 0

 0  16  4 8

x  16  4

x  16  4


C. LIMITS OF PIECEWISE FUNCTIONS


Solution f (x) a) xlim  1 lim f ( x )  lim x 2  1  (1) 2  1

x  1

x  1

0 lim f ( x )  lim x  2  1  2

x  1

x  1

 3  lim f ( x )  lim f ( x ) x  1

x  1

 lim f x  x  1

does not exist.


Solution lim f ( x ) b) x 0 lim f ( x )  lim x  2  0  2

x 0

x 0

 2 lim f ( x )  lim x  2  0  2

x 0

x 0

 2

 lim f ( x )  lim f ( x )  2 x 0

x 0

 lim f x   2. x 0


A) POLYNOMIAL FUNCTIONS Theorem: Let k be a real number.

a)

lim k  k

x  

x   b) xlim  

lim x   n

x 

lim x   n

x 

lim k  k

x 

lim x  

x 

If n is even

lim x n   If n is odd x 


The end behaviour of a polynomial matches the end behaviour of its highest degree term, i.e. if c n  0 then,

lim c 0  c1x  ...  c n x n  lim c n x n

x  

If

lim f x   L

x 

x  

, then y = L is a horizontal

asymptote of f (x)


Evaluate the following limits a)

Highest degree

lim 7x 5  4x 3  2x  9   (n  5 is odd)

x  

Highest degree

b)

lim 4 x8  17x3  5x  1   (n  8 is even)

x 


B) RATIONAL FUNCTIONS 1 1 Consider the function f  x   for lim . x x  x x f(x)

10 0.1

100 0.01

1000 0.001

10000 0.0001

100000 0.00001

The above table shows that when x increases, the value of f(x) approaches zero. i.e. lim 1  0 x 

x


1 1 Consider the function f  x   for lim . x   x x x

-10

-100

-1000

-10000

-100000

f(x)

-0.1

-0.01

-0.001

-0.0001

-0.00001

The above table shows that when x decreases,

1 the value of f(x) approaches zero. i.e. lim  0 x   x

1  lim 0 x  x


To evaluate limits at infinity, divide the

NOTE

numerator

denominator

by

and the

the highest

power of x that occurs in the denominator.


4x  3 Find lim x  1  x

4x  3 4x  3 lim  lim x x  1  x x  1  x x highest power of denominator

4x 3   lim x x x  1 x  x x 3 4 x  lim x  1 1 x

Divide by the highest power of denominator

1 lim  0 x  x

4  lim  lim 4  4 x  1 x 


Alternatively, A QUICK METHOD for finding limits of rational functions as

x   or x  - The end behaviour of a rational function matches the end behaviour of the quotient of the highest degree term in the numerator divided by the highest degree term in the denominator.


Solution 4x  x 2

lim

x 

Find

4x  x 2

lim

x 

2x  5 3

2x  5 3

= lim

x 

2x 3  5

2 = lim đ?‘Ľâ†’∞ đ?‘Ľ =0

highest degree term in the numerator divided by the highest degree term in the denominator.

4x  x 2

1 lim  0 x  x



CONTINUITY TEST

CONTINUITY

A function f is said to be continuous at x = c

NOTE

provided the following conditions are satisfied i.

f(c) is defined

ii. lim f(x) exist If one or more conditions fails to hold, f has a discontinuity at x = c.

xc

lim f(x)  lim- f(x)

x c

x c

iii. lim f(x)  f(c) exist x c

If one or more conditions fails to hold, f has a discontinuity at x = c.


i.

f(c) is defined

ii.

lim f(x) exist

iii.

lim f(x)  f(c) exist

x c

f(c) is not defined

c i)

xc

lim f ( x )  lim f ( x )

x c 

x c 

lim f ( x ) exists x c

ii) f(c) is not defined

 f(x) not continuous


i. ii.

f(c) is defined

lim f(x) exist xc

f(x)  f(c) exist iii. xlim c

c i) lim f ( x )  lim f ( x ) x c 

lim f ( x )

x c

x c 

Does not exists

 f(x) not continuous


i. ii.

f(c) is defined

lim f(x) exist xc

f(x)  f(c) exist iii. xlim c

c

f(c)

i) lim f ( x )  lim f ( x ) x c 

x c 

lim f ( x ) exists x c

ii) f(c) is defined

iii) lim f ( x )  f (c ) x c

 f(x) not continuous


PROPERTIES OF CONTINUOUS FUNCTION If the functions f and g are continuous at x=c,then (a) [f (x)]n is continuous at x = c, (b)

f ± g is continuous at x = c,

(c)

fg is continuous at x = c,

(d)

f /g is continuous at x = c, if g(c)  0 and has discontinuity at c if g(c) =0


Theorem

Determine whether the following

A polynomial is continuous for all x.

functions are continuous at x = 3 a) f(x)=x2 – 4x b) f(x) = x3 -2


a) f(x)=x2 – 4x

Solution

lim x  4 x  3   4(3) 2

2

x 3

 9  12  3 lim x  4 x  3   4(3) 2

lim f(x) exist xc

2

x 3

 9  12  3

lim f(x)  lim- f(x)

x c

x c

 lim x 2  4 x  3 x 3


f (3)  3  4(3)  3 2

lim x  4x  f (3)  3 2

x3

f(c) is defined

lim f(x)  f(c) exist x c

Since lim x  4x  f (3)  3 hence f ( x)  x  4x 2

x3

is continuous at x = 3

2


If f is a rational function, a power

NOTE

function, or a trigonometric function, then f is continuous at any number x = c

for which f(c) is defined.

A rational function is continuous for

Theorem

all x except those values that makes the denominator is zero.


Determine whether the following functions are continuous at the indicated point

a)

b)

f x  

3 x2  1

; x2

x2  x  2 f x   ; x 1 x 1


Solution 3 lim 2 1 x 2  x  1

3 lim 2 1 x 2  x  1

3  lim 2 1 x 1 x 2

f 2  1 Since lim f x   1  f 2 x 2

hence f(x) is continuous at x = 2.


Solution x2  x  2 lim x 1 x 1

0   0

 x2  x  2 x  1x  2 lim  lim x 1 x 1 x 1 x 1  lim x  2

 x2  x  2 x  1x  2 lim  lim x 1 x 1 x 1 x 1  lim x  2 x 1

x 1

 1 2 3

 1 2 3

x  x2  lim 3 x 1 x 1 2


(1)  1  2 0 f (1)   1 1 0 2

is undefined

2 x2  x  2 Since lim  f (1) hence f(x)= x  x  2 x 1 x 1 x 1

Is not continuous at x = 1.


If

f x  

Solution

x 1 2

x 3  x 2  2x

, find the discontinuities of f.

x2  1 x2  1 f (x)  3  2 x  x  2x xx  2x  1 f is discontinuous when the denominator is zero

x( x  2)( x  1)  0  x  0, x  2, x  1 Hence f(x) is not continuous at x = 0, -2, 1.


x 3  y 3  3 xy  9

b)

TIPS use

Solution

dy  dy  3x  3y  3 x  y  0 dx  dx  dy 2 2 dy 3x  3y  3x  3y  0 dx dx dy 2 dy 3y  3x  3x 2  3y dx dx dy 3x  3y 2  3x 2  3y dx dy  3x 2  3y  dx 3x  3y 2 2

2

 (x 2  y)  x  y2

dy dv du u  v dx dx dx


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.